import math import os from pathlib import Path from typing import Union import cv2 import numpy as np from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url from PIL import Image from realesrgan import RealESRGANer import internals.util.image as ImageUtil from internals.util.commons import download_image class Upscaler: __model_esrgan_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" __model_esrgan_anime_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" __loaded = False def load(self): if self.__loaded: return download_dir = Path(Path.home() / ".cache" / "realesrgan") download_dir.mkdir(parents=True, exist_ok=True) self.__model_path = self.__preload_model(self.__model_esrgan_url, download_dir) self.__model_path_anime = self.__preload_model( self.__model_esrgan_anime_url, download_dir ) self.__loaded = True def upscale(self, image: Union[str, Image.Image], resize_dimension: int) -> bytes: model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4, ) return self.__internal_upscale( image, resize_dimension, self.__model_path, model ) def upscale_anime( self, image: Union[str, Image.Image], resize_dimension: int ) -> bytes: model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4, ) return self.__internal_upscale( image, resize_dimension, self.__model_path_anime, model ) def __preload_model(self, url: str, download_dir: Path): name = url.split("/")[-1] if not os.path.exists(str(download_dir / name)): return load_file_from_url( url=url, model_dir=str(download_dir), progress=True, file_name=None, ) else: return str(download_dir / name) def __internal_upscale( self, image, resize_dimension: int, model_path: str, rrbdnet: RRDBNet, ) -> bytes: if type(image) is str: image = download_image(image) image = ImageUtil.resize_image_to512(image) image = ImageUtil.to_bytes(image) if isinstance(image, Image.Image): image = ImageUtil.to_bytes(image) upsampler = RealESRGANer( scale=4, model_path=model_path, model=rrbdnet, half="fp16", gpu_id="0" ) image_array = np.frombuffer(image, dtype=np.uint8) input_image = cv2.imdecode(image_array, cv2.IMREAD_COLOR) dimension = min(input_image.shape[0], input_image.shape[1]) scale = max(math.floor(resize_dimension / dimension), 2) output, _ = upsampler.enhance(input_image, outscale=scale) out_bytes = cv2.imencode(".png", output)[1].tobytes() return out_bytes