Ayoub-Laachir
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -59,6 +59,117 @@ These metrics demonstrate the model's ability to accurately transcribe Moroccan
|
|
59 |
|
60 |
The fine-tuned model shows improved handling of Darija-specific words, sentence structure, and overall accuracy.
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
## Challenges and Future Improvements
|
63 |
### Challenges Encountered
|
64 |
- Diverse spellings of words in Moroccan Darija
|
|
|
59 |
|
60 |
The fine-tuned model shows improved handling of Darija-specific words, sentence structure, and overall accuracy.
|
61 |
|
62 |
+
## Audio Transcription Script with PEFT Layers
|
63 |
+
|
64 |
+
This script demonstrates how to transcribe audio files using the fine-tuned Whisper Large V3 model for Moroccan Darija, incorporating PEFT (Parameter-Efficient Fine-Tuning) layers for improved performance.
|
65 |
+
|
66 |
+
### Required Libraries
|
67 |
+
|
68 |
+
Before running the script, ensure you have the following libraries installed. You can install them using:
|
69 |
+
|
70 |
+
```bash
|
71 |
+
!pip install --upgrade pip
|
72 |
+
!pip install --upgrade transformers accelerate librosa soundfile pydub
|
73 |
+
!pip install peft==0.3.0 # Install PEFT library
|
74 |
+
```
|
75 |
+
```python
|
76 |
+
import torch
|
77 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
78 |
+
import librosa
|
79 |
+
import soundfile as sf
|
80 |
+
from pydub import AudioSegment
|
81 |
+
from peft import PeftModel, PeftConfig # Import PEFT classes
|
82 |
+
|
83 |
+
# Set the device to GPU if available, else use CPU
|
84 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
85 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
86 |
+
|
87 |
+
# Configuration for the base Whisper model
|
88 |
+
base_model_name = "openai/whisper-large-v3" # Base model for Whisper
|
89 |
+
processor = AutoProcessor.from_pretrained(base_model_name) # Load the processor
|
90 |
+
|
91 |
+
# Load your fine-tuned model configuration
|
92 |
+
model_name = "Ayoub-Laachir/MaghrebVoice_OnlyLoRaLayers" # Fine-tuned model with LoRA layers
|
93 |
+
peft_config = PeftConfig.from_pretrained(model_name) # Load PEFT configuration
|
94 |
+
|
95 |
+
# Load the base model
|
96 |
+
base_model = AutoModelForSpeechSeq2Seq.from_pretrained(base_model_name).to(device) # Load the base model
|
97 |
+
|
98 |
+
# Load the PEFT model
|
99 |
+
model = PeftModel.from_pretrained(base_model, model_name).to(device) # Load the PEFT model
|
100 |
+
|
101 |
+
# Merge the LoRA weights with the base model
|
102 |
+
model = model.merge_and_unload() # Combine the LoRA weights into the base model
|
103 |
+
|
104 |
+
# Configuration for transcription
|
105 |
+
config = {
|
106 |
+
"language": "arabic", # Language for transcription
|
107 |
+
"task": "transcribe", # Task type
|
108 |
+
"chunk_length_s": 30, # Length of each audio chunk in seconds
|
109 |
+
"stride_length_s": 5, # Overlap between chunks in seconds
|
110 |
+
}
|
111 |
+
|
112 |
+
# Initialize the automatic speech recognition pipeline
|
113 |
+
pipe = pipeline(
|
114 |
+
"automatic-speech-recognition",
|
115 |
+
model=model, # Use the merged model
|
116 |
+
tokenizer=processor.tokenizer,
|
117 |
+
feature_extractor=processor.feature_extractor,
|
118 |
+
torch_dtype=torch_dtype,
|
119 |
+
device=device,
|
120 |
+
chunk_length_s=config["chunk_length_s"],
|
121 |
+
stride_length_s=config["stride_length_s"],
|
122 |
+
)
|
123 |
+
|
124 |
+
# Convert audio to 16kHz sampling rate
|
125 |
+
def convert_audio_to_16khz(input_path, output_path):
|
126 |
+
audio, sr = librosa.load(input_path, sr=None) # Load the audio file
|
127 |
+
audio_16k = librosa.resample(audio, orig_sr=sr, target_sr=16000) # Resample to 16kHz
|
128 |
+
sf.write(output_path, audio_16k, 16000) # Save the converted audio
|
129 |
+
|
130 |
+
# Format time in HH:MM:SS.milliseconds
|
131 |
+
def format_time(seconds):
|
132 |
+
hours = int(seconds // 3600)
|
133 |
+
minutes = int((seconds % 3600) // 60)
|
134 |
+
seconds = seconds % 60
|
135 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:06.3f}"
|
136 |
+
|
137 |
+
# Transcribe audio file
|
138 |
+
def transcribe_audio(audio_path):
|
139 |
+
try:
|
140 |
+
result = pipe(audio_path, return_timestamps=True) # Transcribe audio and get timestamps
|
141 |
+
return result["chunks"] # Return transcription chunks
|
142 |
+
except Exception as e:
|
143 |
+
print(f"Error transcribing audio: {e}")
|
144 |
+
return None
|
145 |
+
|
146 |
+
# Main function to execute the transcription process
|
147 |
+
def main():
|
148 |
+
# Specify input and output audio paths (update paths as needed)
|
149 |
+
input_audio_path = "/path/to/your/input/audio.mp3" # Replace with your input audio path
|
150 |
+
output_audio_path = "/path/to/your/output/audio_16khz.wav" # Replace with your output audio path
|
151 |
+
|
152 |
+
# Convert audio to 16kHz
|
153 |
+
convert_audio_to_16khz(input_audio_path, output_audio_path)
|
154 |
+
|
155 |
+
# Transcribe the converted audio
|
156 |
+
transcription_chunks = transcribe_audio(output_audio_path)
|
157 |
+
|
158 |
+
if transcription_chunks:
|
159 |
+
print("WEBVTT\n") # Print header for WEBVTT format
|
160 |
+
for chunk in transcription_chunks:
|
161 |
+
start_time = format_time(chunk["timestamp"][0]) # Format start time
|
162 |
+
end_time = format_time(chunk["timestamp"][1]) # Format end time
|
163 |
+
text = chunk["text"] # Get the transcribed text
|
164 |
+
print(f"{start_time} --> {end_time}") # Print time range
|
165 |
+
print(f"{text}\n") # Print transcribed text
|
166 |
+
else:
|
167 |
+
print("Transcription failed.")
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
main()
|
171 |
+
```
|
172 |
+
|
173 |
## Challenges and Future Improvements
|
174 |
### Challenges Encountered
|
175 |
- Diverse spellings of words in Moroccan Darija
|