File size: 7,980 Bytes
b383093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1923a
 
263d861
 
f6e4005
263d861
 
 
 
 
19eebd2
1c1923a
e033d28
 
1c1923a
 
b383093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
base_model:
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
model-index:
- name: Umbra-v3-MoE-4x11b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.43
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.83
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 69.3
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.9
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.08
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
      name: Open LLM Leaderboard
---


ExllamaV2 version of the model created by [Steelskull](https://huggingface.co/Steelskull)!

Original Model https://huggingface.co/Steelskull/Umbra-v3-MoE-4x11b

calibration dataset [here.](https://huggingface.co/datasets/royallab/PIPPA-cleaned)

Requires ExllamaV2, which is being developed by turboderp https://github.com/turboderp/exllamav2 under an MIT license.

Test using 4096 measurement length and rp dataset. Perplexity came out to an 8 vs the Wiki which was at a 6. Haven't tested enough to tell if there is much difference in practice between the two.

Branch is 8b8h using wikitext at 4096 length

-----

<!DOCTYPE html>
<style>
    body {
    font-family: 'Quicksand', sans-serif;
    background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%);
    color: #D8DEE9;
    margin: 0;
    padding: 0;
    font-size: 16px;
}

.container {
    width: 80%;
    max-width: 800px;
    margin: 20px auto;
    background-color: rgba(255, 255, 255, 0.02);
    padding: 20px;
    border-radius: 12px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
    backdrop-filter: blur(10px);
    border: 1px solid rgba(255, 255, 255, 0.1);
}

.header h1 {
    font-size: 28px;
    color: #ECEFF4;
    margin: 0 0 20px 0;
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}

.update-section {
    margin-top: 30px;
}

.update-section h2 {
    font-size: 24px;
    color: #88C0D0;
}

.update-section p {
    font-size: 16px;
    line-height: 1.6;
    color: #ECEFF4;
}

.info img {
    width: 100%;
    border-radius: 10px;
    margin-bottom: 15px;
}

a {
    color: #88C0D0;
    text-decoration: none;
}

a:hover {
    color: #A3BE8C;
}

.button {
    display: inline-block;
    background-color: #5E81AC;
    color: #E5E9F0;
    padding: 10px 20px;
    border-radius: 5px;
    cursor: pointer;
    text-decoration: none;
}

.button:hover {
    background-color: #81A1C1;
}

</style>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Umbra-v3-MoE-4x11b Data Card</title>
    <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
</head>
<body>
<div class="container">
    <div class="header">
        <h1>Umbra-v3-MoE-4x11b</h1>
    </div>
    <div class="info">
        <img src="https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/MHmVGOLGh4I5MfQ83iiXS.jpeg">
        <p><strong>Creator:</strong> <a href="https://huggingface.co/Steelskull" target="_blank">SteelSkull</a></p>
        <p><strong>About Umbra-v3-MoE-4x11b:</strong> A Mixture of Experts model designed for general assistance with a special knack for storytelling and RP/ERP</p>
        <p>Integrates models from notable sources for enhanced performance in diverse tasks.</p>
        <p><strong>Source Models:</strong></p>
        <ul>
            <li><a href="https://huggingface.co/Himitsui/Kaiju-11B">Himitsui/Kaiju-11B</a></li>
            <li><a href="https://huggingface.co/Sao10K/Fimbulvetr-11B-v2">Sao10K/Fimbulvetr-11B-v2</a></li>
            <li><a href="https://huggingface.co/decapoda-research/Antares-11b-v2">decapoda-research/Antares-11b-v2</a></li>
            <li><a href="https://huggingface.co/beberik/Nyxene-v3-11B">beberik/Nyxene-v3-11B</a></li>
        </ul>
    </div>
    <div class="update-section">
        <h2>Update-Log:</h2>
        <p>The [Umbra Series] keeps rolling out from the [Lumosia Series] garage, aiming to be your digital Alfred with a side of Shakespeare for those RP/ERP nights.</p>
        <p><strong>What's Fresh in v3?</strong></p>
        <p>Didn’t reinvent the wheel, just slapped on some fancier rims. Upgraded the models and tweaked the prompts a bit. Now, Umbra's not just a general use LLM; it's also focused on spinning stories and "Stories".</p>
        <p><strong>Negative Prompt Minimalism</strong></p>
        <p>Got the prompts to do a bit of a diet and gym routine—more beef on the positives, trimming down the negatives as usual with a dash of my midnight musings.</p>
        <p><strong>Still Guessing, Aren’t We?</strong></p>
        <p>Just so we're clear, "v3" is not the messiah of updates. It’s another experiment in the saga.</p>
        <p>Dive into Umbra v3 and toss your two cents my way. Your feedback is the caffeine in my code marathon.</p>
    </div>
</div>
</body>
</html>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Umbra-v3-MoE-4x11b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.09|
|AI2 Reasoning Challenge (25-Shot)|68.43|
|HellaSwag (10-Shot)              |87.83|
|MMLU (5-Shot)                    |65.99|
|TruthfulQA (0-shot)              |69.30|
|Winogrande (5-shot)              |83.90|
|GSM8k (5-shot)                   |63.08|