File size: 7,980 Bytes
b383093 1c1923a 263d861 f6e4005 263d861 19eebd2 1c1923a e033d28 1c1923a b383093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
base_model:
- Himitsui/Kaiju-11B
- Sao10K/Fimbulvetr-11B-v2
- decapoda-research/Antares-11b-v2
- beberik/Nyxene-v3-11B
model-index:
- name: Umbra-v3-MoE-4x11b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.43
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.99
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.3
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v3-MoE-4x11b
name: Open LLM Leaderboard
---
ExllamaV2 version of the model created by [Steelskull](https://huggingface.co/Steelskull)!
Original Model https://huggingface.co/Steelskull/Umbra-v3-MoE-4x11b
calibration dataset [here.](https://huggingface.co/datasets/royallab/PIPPA-cleaned)
Requires ExllamaV2, which is being developed by turboderp https://github.com/turboderp/exllamav2 under an MIT license.
Test using 4096 measurement length and rp dataset. Perplexity came out to an 8 vs the Wiki which was at a 6. Haven't tested enough to tell if there is much difference in practice between the two.
Branch is 8b8h using wikitext at 4096 length
-----
<!DOCTYPE html>
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%);
color: #D8DEE9;
margin: 0;
padding: 0;
font-size: 16px;
}
.container {
width: 80%;
max-width: 800px;
margin: 20px auto;
background-color: rgba(255, 255, 255, 0.02);
padding: 20px;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.1);
}
.header h1 {
font-size: 28px;
color: #ECEFF4;
margin: 0 0 20px 0;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.update-section {
margin-top: 30px;
}
.update-section h2 {
font-size: 24px;
color: #88C0D0;
}
.update-section p {
font-size: 16px;
line-height: 1.6;
color: #ECEFF4;
}
.info img {
width: 100%;
border-radius: 10px;
margin-bottom: 15px;
}
a {
color: #88C0D0;
text-decoration: none;
}
a:hover {
color: #A3BE8C;
}
.button {
display: inline-block;
background-color: #5E81AC;
color: #E5E9F0;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
text-decoration: none;
}
.button:hover {
background-color: #81A1C1;
}
</style>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Umbra-v3-MoE-4x11b Data Card</title>
<link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
</head>
<body>
<div class="container">
<div class="header">
<h1>Umbra-v3-MoE-4x11b</h1>
</div>
<div class="info">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/MHmVGOLGh4I5MfQ83iiXS.jpeg">
<p><strong>Creator:</strong> <a href="https://huggingface.co/Steelskull" target="_blank">SteelSkull</a></p>
<p><strong>About Umbra-v3-MoE-4x11b:</strong> A Mixture of Experts model designed for general assistance with a special knack for storytelling and RP/ERP</p>
<p>Integrates models from notable sources for enhanced performance in diverse tasks.</p>
<p><strong>Source Models:</strong></p>
<ul>
<li><a href="https://huggingface.co/Himitsui/Kaiju-11B">Himitsui/Kaiju-11B</a></li>
<li><a href="https://huggingface.co/Sao10K/Fimbulvetr-11B-v2">Sao10K/Fimbulvetr-11B-v2</a></li>
<li><a href="https://huggingface.co/decapoda-research/Antares-11b-v2">decapoda-research/Antares-11b-v2</a></li>
<li><a href="https://huggingface.co/beberik/Nyxene-v3-11B">beberik/Nyxene-v3-11B</a></li>
</ul>
</div>
<div class="update-section">
<h2>Update-Log:</h2>
<p>The [Umbra Series] keeps rolling out from the [Lumosia Series] garage, aiming to be your digital Alfred with a side of Shakespeare for those RP/ERP nights.</p>
<p><strong>What's Fresh in v3?</strong></p>
<p>Didn’t reinvent the wheel, just slapped on some fancier rims. Upgraded the models and tweaked the prompts a bit. Now, Umbra's not just a general use LLM; it's also focused on spinning stories and "Stories".</p>
<p><strong>Negative Prompt Minimalism</strong></p>
<p>Got the prompts to do a bit of a diet and gym routine—more beef on the positives, trimming down the negatives as usual with a dash of my midnight musings.</p>
<p><strong>Still Guessing, Aren’t We?</strong></p>
<p>Just so we're clear, "v3" is not the messiah of updates. It’s another experiment in the saga.</p>
<p>Dive into Umbra v3 and toss your two cents my way. Your feedback is the caffeine in my code marathon.</p>
</div>
</div>
</body>
</html>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Umbra-v3-MoE-4x11b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.09|
|AI2 Reasoning Challenge (25-Shot)|68.43|
|HellaSwag (10-Shot) |87.83|
|MMLU (5-Shot) |65.99|
|TruthfulQA (0-shot) |69.30|
|Winogrande (5-shot) |83.90|
|GSM8k (5-shot) |63.08|
|