--- license: other --- ![Aquila_logo](./log.jpeg)

English | 简体中文 |

We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k** The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels. ## Updates 2024.6.6 We have updated the basic language model **Aquila2-34B**, which has the following advantages compared to the previous model: * Replaced tokenizer with higher compression ratio: | Tokenizer | Size | Zh | En | Code | Math | Average | |-----------|-------|--------------------------|--------|-------|-------|---------| | Aquila2-original | 100k | **4.70** | 4.42 | 3.20 | 3.77 | 4.02 | | Qwen1.5 | 151k | 4.27 | 4.51 | 3.62 | 3.35 | 3.94 | | Llama3 | 128k | 3.45 | **4.61** | 3.77 | **3.88** | 3.93 | | Aquila2-new | 143k | 4.60 | **4.61** | **3.78** | **3.88** | **4.22** | * The maximum processing length supported by the model has increased from 2048 to 8192 ## Quick Start Aquila2-34B ### 1. Inference Aquila2-34B is a base model that can be used for continuation. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig device= "cuda:0" # Model Name model_name = 'BAAI/Aquila2-34B' # load model and tokenizer quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, # quantization_config=quantization_config # Uncomment this one for 4-bit quantization ) tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) model.eval() model.to(device) # Example text = "The meaning of life is" tokens = tokenizer.encode_plus(text)['input_ids'] tokens = torch.tensor(tokens)[None,].to(device) with torch.no_grad(): out = model.generate(tokens, do_sample=False, max_length=128, eos_token_id=tokenizer.eos_token_id)[0] out = tokenizer.decode(out.cpu().numpy().tolist()) print(out) ``` ## License Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/Aquila2-34B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) ## Citation Feel free to cite the repo if you think Aquila2 is useful. ```python @misc{zhang2024aquila2technicalreport, title={Aquila2 Technical Report}, author={Bo-Wen Zhang and Liangdong Wang and Jijie Li and Shuhao Gu and Xinya Wu and Zhengduo Zhang and Boyan Gao and Yulong Ao and Guang Liu}, year={2024}, eprint={2408.07410}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2408.07410}, } ```