Upload folder using huggingface_hub
Browse files- .gitattributes +6 -0
- README.md +167 -3
- added_tokens.json +7 -0
- assets/cir_candi_1.png +0 -0
- assets/cir_candi_2.png +3 -0
- assets/cir_query.png +3 -0
- assets/res-ft-mmeb.png +3 -0
- assets/res-scaling.png +3 -0
- assets/res-zs-cir.png +3 -0
- assets/res-zs-mmeb.png +3 -0
- config.json +66 -0
- generation_config.json +6 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +694 -0
- modeling_llavanext_for_embedding.py +329 -0
- preprocessor_config.json +52 -0
- special_tokens_map.json +53 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +93 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/cir_candi_2.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/cir_query.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
assets/res-ft-mmeb.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
assets/res-scaling.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
assets/res-zs-cir.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
assets/res-zs-mmeb.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,167 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- llava-hf/llava-v1.6-mistral-7b-hf
|
7 |
+
tags:
|
8 |
+
- multimodal-retrieval
|
9 |
+
- embedding-model
|
10 |
+
---
|
11 |
+
<h1 align="center">MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval</h1>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<a href="https://arxiv.org/abs/2412.14475">
|
15 |
+
<img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2412.14475-B31B1B.svg">
|
16 |
+
</a>
|
17 |
+
<a href="https://github.com/VectorSpaceLab/MegaPairs">
|
18 |
+
<img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
|
19 |
+
</a>
|
20 |
+
<a href="https://huggingface.co/datasets/JUNJIE99/MegaPairs">
|
21 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Datasets-MegaPairs-yellow">
|
22 |
+
</p>
|
23 |
+
|
24 |
+
<p align="center">
|
25 |
+
</a>
|
26 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-base">
|
27 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_base-yellow">
|
28 |
+
</a>
|
29 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-large">
|
30 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_large-yellow">
|
31 |
+
</a>
|
32 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-MLLM-S1">
|
33 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_MLLM_S1-yellow">
|
34 |
+
</a>
|
35 |
+
<a href="https://huggingface.co/JUNJIE99/MMRet-MLLM-S2">
|
36 |
+
<img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_MLLM_S2-yellow">
|
37 |
+
</a>
|
38 |
+
</p>
|
39 |
+
|
40 |
+
## News
|
41 |
+
```2024-3-4``` 🚀🚀 We have released the MMRet-MLLM models on Hugging Face: [MMRet-MLLM-S1](https://huggingface.co/JUNJIE99/MMRet-MLLM-S1) and [MMRet-MLLM-S2](https://huggingface.co/JUNJIE99/MMRet-MLLM-S2). **MMRet-MLLM-S1** is trained exclusively on our MegaPairs dataset, achieving outstanding performance in composed image retrieval, with an 8.1% improvement on the CIRCO benchmark (mAP@5) over the previous state-of-the-art. **MMRet-MLLM-S2** builds on MMRet-MLLM-S1 with an additional epoch of fine-tuning on the MMEB benchmark training set, delivering enhanced performance across a broader range of multimodal embedding tasks.
|
42 |
+
|
43 |
+
```2024-12-27``` 🚀🚀 MMRet-CLIP models are released in Huggingface: [MMRet-base](https://huggingface.co/JUNJIE99/MMRet-base) and [MMRet-large](https://huggingface.co/JUNJIE99/MMRet-large).
|
44 |
+
|
45 |
+
```2024-12-19``` 🎉🎉 Release our paper: [MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval](https://arxiv.org/pdf/2412.14475).
|
46 |
+
|
47 |
+
## Release Plan
|
48 |
+
- [x] Paper
|
49 |
+
- [x] MMRet-base and MMRet-large models
|
50 |
+
- [x] MMRet-MLLM model
|
51 |
+
- [ ] MegaPairs Dataset
|
52 |
+
- [ ] Evaluation code
|
53 |
+
- [ ] Fine-tuning code
|
54 |
+
|
55 |
+
|
56 |
+
## Introduction
|
57 |
+
In this project, we introduce **MegaPairs**, a novel data synthesis method that leverages open-domain images to create *heterogeneous KNN triplets* for universal multimodal retrieval. Our MegaPairs dataset contains over 26 million triplets, and we have trained a series of multimodal retrieval models, **MMRets**, including MMRet-CLIP (base and large) and MMRet-MLLM.
|
58 |
+
|
59 |
+
MMRets achieve state-of-the-art performance on four popular zero-shot composed image retrieval benchmarks and the massive multimodal embedding benchmark (MMEB). Extensive experiments demonstrate the ***efficiency, scalability, and generalization*** features of MegaPairs. Please refer to our [paper](https://arxiv.org/abs/2412.14475) for more details.
|
60 |
+
|
61 |
+
## Model Usage
|
62 |
+
|
63 |
+
### 1. MMRet-CLIP Models
|
64 |
+
You can easily use MMRet-CLIP models based on ```transformers```
|
65 |
+
```python
|
66 |
+
import torch
|
67 |
+
from transformers import AutoModel
|
68 |
+
|
69 |
+
MODEL_NAME = "JUNJIE99/MMRet-base" # or "JUNJIE99/MMRet-large"
|
70 |
+
|
71 |
+
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
|
72 |
+
model.set_processor(MODEL_NAME)
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
query = model.encode(
|
77 |
+
images = "./assets/cir_query.png",
|
78 |
+
text = "Make the background dark, as if the camera has taken the photo at night"
|
79 |
+
)
|
80 |
+
|
81 |
+
candidates = model.encode(
|
82 |
+
images = ["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"]
|
83 |
+
)
|
84 |
+
|
85 |
+
scores = query @ candidates.T
|
86 |
+
print(scores)
|
87 |
+
```
|
88 |
+
|
89 |
+
### 2. MMRet-MLLM Models
|
90 |
+
```python
|
91 |
+
import torch
|
92 |
+
from transformers import AutoModel
|
93 |
+
from PIL import Image
|
94 |
+
|
95 |
+
MODEL_NAME= "JUNJIE99/MMRet-MLLM-S1"
|
96 |
+
|
97 |
+
model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
98 |
+
model.eval()
|
99 |
+
model.cuda()
|
100 |
+
|
101 |
+
with torch.no_grad():
|
102 |
+
model.set_processor(MODEL_NAME)
|
103 |
+
|
104 |
+
query_inputs = model.data_process(
|
105 |
+
text="Make the background dark, as if the camera has taken the photo at night",
|
106 |
+
images="./assets/cir_query.png",
|
107 |
+
q_or_c="q",
|
108 |
+
task_instruction="Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
|
109 |
+
)
|
110 |
+
|
111 |
+
candidate_inputs = model.data_process(
|
112 |
+
images=["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"],
|
113 |
+
q_or_c="c",
|
114 |
+
)
|
115 |
+
|
116 |
+
query_embs = model(**query_inputs, output_hidden_states=True)[:, -1, :]
|
117 |
+
candi_embs = model(**candidate_inputs, output_hidden_states=True)[:, -1, :]
|
118 |
+
|
119 |
+
query_embs = torch.nn.functional.normalize(query_embs, dim=-1)
|
120 |
+
candi_embs = torch.nn.functional.normalize(candi_embs, dim=-1)
|
121 |
+
|
122 |
+
scores = torch.matmul(query_embs, candi_embs.T)
|
123 |
+
print(scores)
|
124 |
+
```
|
125 |
+
|
126 |
+
|
127 |
+
## Model Performance
|
128 |
+
### Zero-Shot Composed Image Retrieval
|
129 |
+
|
130 |
+
MMRet sets a new performance benchmark in zero-shot composed image retrieval tasks. On the CIRCO benchmark, our MMRet-base model, with only 149 million parameters, surpasses all previous models, including those with 50 times more parameters. Additionally, MMRet-MLLM achieves an 8.1% improvement over the previous state-of-the-art model.
|
131 |
+
|
132 |
+
<img src="./assets/res-zs-cir.png" width="800">
|
133 |
+
|
134 |
+
### Zero-Shot Performance on MMEB
|
135 |
+
|
136 |
+
MMRet-MLLM achieves state-of-the-art zero-shot performance on the Massive Multimodal Embedding Benchmark (MMEB), despite being trained only on the ImageText-to-Image paradigm. This demonstrates the excellent generalization capability of MegaPairs for multimodal embedding.
|
137 |
+
|
138 |
+
<img src="./assets/res-zs-mmeb.png" width="800">
|
139 |
+
|
140 |
+
### Fine-Tuning Performance on MMEB
|
141 |
+
|
142 |
+
After fine-tuning on downstream tasks, MMRet-MLLM maintains its leading performance. Notably, it surpasses the previous state-of-the-art by 7.1% on the MMEB out-of-distribution (OOD) set. These results demonstrate the robust generalization capability of MMRet-MLLM and highlight the potential of MegaPairs as foundational training data for universal multimodal embedding.
|
143 |
+
|
144 |
+
<img src="./assets/res-ft-mmeb.png" width="800">
|
145 |
+
|
146 |
+
### Performance Scaling
|
147 |
+
MegaPairs showcases **scalability**: MMRet-base improves as training data increases. It also demonstrates **efficiency**: with just 0.5M training samples, MMRet-base significantly outperforms MagicLens, which uses the same CLIP-base backbone and was trained on 36.7M samples.
|
148 |
+
|
149 |
+
<img src="./assets/res-scaling.png" width="800">
|
150 |
+
|
151 |
+
|
152 |
+
## License
|
153 |
+
The annotations for MegaPairs and the MMRet models are released under the [MIT License](LICENSE). The images in MegaPairs originate from the [Recap-Datacomp](https://huggingface.co/datasets/UCSC-VLAA/Recap-DataComp-1B), which is released under the CC BY 4.0 license.
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
## Citation
|
158 |
+
If you find this repository useful, please consider giving a star ⭐ and citation
|
159 |
+
|
160 |
+
```
|
161 |
+
@article{zhou2024megapairs,
|
162 |
+
title={MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval},
|
163 |
+
author={Zhou, Junjie and Liu, Zheng and Liu, Ze and Xiao, Shitao and Wang, Yueze and Zhao, Bo and Zhang, Chen Jason and Lian, Defu and Xiong, Yongping},
|
164 |
+
journal={arXiv preprint arXiv:2412.14475},
|
165 |
+
year={2024}
|
166 |
+
}
|
167 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image>": 32000,
|
3 |
+
"<instruct>": 32002,
|
4 |
+
"<pad>": 32001,
|
5 |
+
"<query_txt_img>": 32003,
|
6 |
+
"<target_img>": 32004
|
7 |
+
}
|
assets/cir_candi_1.png
ADDED
![]() |
assets/cir_candi_2.png
ADDED
![]() |
Git LFS Details
|
assets/cir_query.png
ADDED
![]() |
Git LFS Details
|
assets/res-ft-mmeb.png
ADDED
![]() |
Git LFS Details
|
assets/res-scaling.png
ADDED
![]() |
Git LFS Details
|
assets/res-zs-cir.png
ADDED
![]() |
Git LFS Details
|
assets/res-zs-mmeb.png
ADDED
![]() |
Git LFS Details
|
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlavaNextForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"ignore_index": -100,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModel": "modeling_llavanext_for_embedding.LLaVANextForEmbedding"
|
8 |
+
},
|
9 |
+
"image_grid_pinpoints": [
|
10 |
+
[
|
11 |
+
336,
|
12 |
+
672
|
13 |
+
],
|
14 |
+
[
|
15 |
+
672,
|
16 |
+
336
|
17 |
+
],
|
18 |
+
[
|
19 |
+
672,
|
20 |
+
672
|
21 |
+
],
|
22 |
+
[
|
23 |
+
1008,
|
24 |
+
336
|
25 |
+
],
|
26 |
+
[
|
27 |
+
336,
|
28 |
+
1008
|
29 |
+
]
|
30 |
+
],
|
31 |
+
"image_token_index": 32000,
|
32 |
+
"model_type": "llava_next",
|
33 |
+
"projector_hidden_act": "gelu",
|
34 |
+
"text_config": {
|
35 |
+
"_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
36 |
+
"architectures": [
|
37 |
+
"MistralForCausalLM"
|
38 |
+
],
|
39 |
+
"intermediate_size": 14336,
|
40 |
+
"max_position_embeddings": 32768,
|
41 |
+
"model_type": "mistral",
|
42 |
+
"num_key_value_heads": 8,
|
43 |
+
"rms_norm_eps": 1e-05,
|
44 |
+
"rope_theta": 1000000.0,
|
45 |
+
"sliding_window": null,
|
46 |
+
"torch_dtype": "bfloat16",
|
47 |
+
"vocab_size": 32005
|
48 |
+
},
|
49 |
+
"torch_dtype": "float16",
|
50 |
+
"transformers_version": "4.39.0.dev0",
|
51 |
+
"use_image_newline_parameter": true,
|
52 |
+
"vision_config": {
|
53 |
+
"hidden_size": 1024,
|
54 |
+
"image_size": 336,
|
55 |
+
"intermediate_size": 4096,
|
56 |
+
"model_type": "clip_vision_model",
|
57 |
+
"num_attention_heads": 16,
|
58 |
+
"num_hidden_layers": 24,
|
59 |
+
"patch_size": 14,
|
60 |
+
"projection_dim": 768,
|
61 |
+
"vocab_size": 32000
|
62 |
+
},
|
63 |
+
"vision_feature_layer": -2,
|
64 |
+
"vision_feature_select_strategy": "default",
|
65 |
+
"vocab_size": 32005
|
66 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.45.2"
|
6 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4f364034c36c069d5c18b32892225fba7bfa38e5b9db7bb4b80db18890c5612
|
3 |
+
size 4921134816
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d113162bfad03747144fb2cb8f021ea548234f7ae4783381b2d71f8826e097d8
|
3 |
+
size 4915917568
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51039841f598d5531a29a0e696fe1012144d6215eb468bfaecc605da4fb65065
|
3 |
+
size 4915917576
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4868cc980cc6d493640ac26409c0bcab989bd9e71e8ec00c4547f57b2473804c
|
3 |
+
size 379650680
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15132528640
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"image_newline": "model-00001-of-00004.safetensors",
|
7 |
+
"language_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
126 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
225 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
235 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
236 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
239 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
295 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"language_model.model.norm.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"multi_modal_projector.linear_1.bias": "model-00001-of-00004.safetensors",
|
299 |
+
"multi_modal_projector.linear_1.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"multi_modal_projector.linear_2.bias": "model-00001-of-00004.safetensors",
|
301 |
+
"multi_modal_projector.linear_2.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"vision_tower.vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
|
303 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
308 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
310 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
312 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
316 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
318 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
320 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
322 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
323 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
324 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
325 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
328 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
330 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
332 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
334 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
335 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
336 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
337 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
338 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
339 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
340 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
341 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
342 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
343 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
344 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
350 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
360 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
364 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
372 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
378 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
384 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
392 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
396 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
406 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
408 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
448 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
462 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
490 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
491 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
504 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
505 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
518 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
519 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
546 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
560 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
574 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
588 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
602 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
616 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
630 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
644 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
646 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
648 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
649 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"vision_tower.vision_model.pre_layrnorm.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"vision_tower.vision_model.pre_layrnorm.weight": "model-00001-of-00004.safetensors"
|
693 |
+
}
|
694 |
+
}
|
modeling_llavanext_for_embedding.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import transformers
|
3 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, AutoModel
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
from transformers.cache_utils import Cache
|
9 |
+
from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def my_mistral_forward(
|
15 |
+
self,
|
16 |
+
input_ids: torch.LongTensor = None,
|
17 |
+
attention_mask: Optional[torch.Tensor] = None,
|
18 |
+
position_ids: Optional[torch.LongTensor] = None,
|
19 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
20 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
21 |
+
labels: Optional[torch.LongTensor] = None,
|
22 |
+
use_cache: Optional[bool] = None,
|
23 |
+
output_attentions: Optional[bool] = None,
|
24 |
+
output_hidden_states: Optional[bool] = None,
|
25 |
+
return_dict: Optional[bool] = None,
|
26 |
+
cache_position: Optional[torch.LongTensor] = None,
|
27 |
+
num_logits_to_keep: int = 0,
|
28 |
+
):
|
29 |
+
r"""
|
30 |
+
Args:
|
31 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
32 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
33 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
34 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
35 |
+
|
36 |
+
num_logits_to_keep (`int`, *optional*):
|
37 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
38 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
39 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
|
43 |
+
Example:
|
44 |
+
|
45 |
+
```python
|
46 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
47 |
+
|
48 |
+
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
49 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
50 |
+
|
51 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
52 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
53 |
+
|
54 |
+
>>> # Generate
|
55 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
56 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
57 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
58 |
+
```"""
|
59 |
+
|
60 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
61 |
+
output_hidden_states = (
|
62 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
63 |
+
)
|
64 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
65 |
+
|
66 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
67 |
+
outputs = self.model(
|
68 |
+
input_ids=input_ids,
|
69 |
+
attention_mask=attention_mask,
|
70 |
+
position_ids=position_ids,
|
71 |
+
past_key_values=past_key_values,
|
72 |
+
inputs_embeds=inputs_embeds,
|
73 |
+
use_cache=use_cache,
|
74 |
+
output_attentions=output_attentions,
|
75 |
+
output_hidden_states=output_hidden_states,
|
76 |
+
return_dict=return_dict,
|
77 |
+
cache_position=cache_position,
|
78 |
+
)
|
79 |
+
|
80 |
+
hidden_states = outputs[0]
|
81 |
+
|
82 |
+
return hidden_states
|
83 |
+
|
84 |
+
|
85 |
+
def transfer_mistral_forward():
|
86 |
+
transformers.models.mistral.MistralForCausalLM.forward = my_mistral_forward
|
87 |
+
|
88 |
+
class LLaVANextForEmbedding(LlavaNextForConditionalGeneration):
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__(config)
|
91 |
+
|
92 |
+
transfer_mistral_forward()
|
93 |
+
def forward(
|
94 |
+
self,
|
95 |
+
input_ids: torch.LongTensor = None,
|
96 |
+
pixel_values: torch.FloatTensor = None,
|
97 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
98 |
+
attention_mask: Optional[torch.Tensor] = None,
|
99 |
+
position_ids: Optional[torch.LongTensor] = None,
|
100 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
101 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
102 |
+
vision_feature_layer: Optional[int] = None,
|
103 |
+
vision_feature_select_strategy: Optional[str] = None,
|
104 |
+
labels: Optional[torch.LongTensor] = None,
|
105 |
+
use_cache: Optional[bool] = None,
|
106 |
+
output_attentions: Optional[bool] = None,
|
107 |
+
output_hidden_states: Optional[bool] = None,
|
108 |
+
return_dict: Optional[bool] = None,
|
109 |
+
cache_position: Optional[torch.LongTensor] = None,
|
110 |
+
num_logits_to_keep: int = 0,
|
111 |
+
):
|
112 |
+
|
113 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
114 |
+
output_hidden_states = (
|
115 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
116 |
+
)
|
117 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
118 |
+
vision_feature_layer = (
|
119 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
120 |
+
)
|
121 |
+
vision_feature_select_strategy = (
|
122 |
+
vision_feature_select_strategy
|
123 |
+
if vision_feature_select_strategy is not None
|
124 |
+
else self.config.vision_feature_select_strategy
|
125 |
+
)
|
126 |
+
|
127 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
128 |
+
raise ValueError(
|
129 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
130 |
+
)
|
131 |
+
|
132 |
+
if pixel_values is not None and inputs_embeds is not None:
|
133 |
+
raise ValueError(
|
134 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
135 |
+
)
|
136 |
+
|
137 |
+
legacy_processing = False
|
138 |
+
if inputs_embeds is None:
|
139 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
140 |
+
|
141 |
+
# if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
|
142 |
+
# not very reliable, but we don't expect one to actually pass 500+ images for one prompt
|
143 |
+
# In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
|
144 |
+
legacy_processing = (
|
145 |
+
(input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
|
146 |
+
) or (input_ids.shape[-1] == 1 and pixel_values is not None)
|
147 |
+
|
148 |
+
if pixel_values is not None and pixel_values.size(0) > 0:
|
149 |
+
# ! infer image_num_patches from image_sizes
|
150 |
+
image_num_patches = [
|
151 |
+
image_size_to_num_patches(
|
152 |
+
image_size=imsize,
|
153 |
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
154 |
+
patch_size=self.config.vision_config.image_size,
|
155 |
+
)
|
156 |
+
for imsize in image_sizes
|
157 |
+
]
|
158 |
+
# figure out if pixel_values is concatenated or stacked
|
159 |
+
if pixel_values.dim() == 5:
|
160 |
+
# stacking when input is (batch_size, num_patches, num_channels, height, width)
|
161 |
+
_pixel_values_list = [
|
162 |
+
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
|
163 |
+
]
|
164 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
165 |
+
elif pixel_values.dim() != 4:
|
166 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
167 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
168 |
+
|
169 |
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
170 |
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
171 |
+
if vision_feature_select_strategy == "default":
|
172 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
173 |
+
elif vision_feature_select_strategy == "full":
|
174 |
+
selected_image_feature = selected_image_feature
|
175 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
176 |
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
177 |
+
|
178 |
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
179 |
+
image_features, feature_lens = self.pack_image_features(
|
180 |
+
image_features,
|
181 |
+
image_sizes,
|
182 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
183 |
+
image_newline=self.image_newline,
|
184 |
+
)
|
185 |
+
if legacy_processing:
|
186 |
+
logger.warning_once(
|
187 |
+
"Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
|
188 |
+
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
|
189 |
+
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
|
190 |
+
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
|
191 |
+
)
|
192 |
+
if input_ids.shape[1] != 1:
|
193 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
194 |
+
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
|
195 |
+
image_features,
|
196 |
+
feature_lens,
|
197 |
+
inputs_embeds,
|
198 |
+
input_ids,
|
199 |
+
attention_mask,
|
200 |
+
position_ids,
|
201 |
+
labels=labels,
|
202 |
+
)
|
203 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
|
204 |
+
else:
|
205 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
206 |
+
# that are set to 0
|
207 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
208 |
+
|
209 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
210 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
211 |
+
|
212 |
+
# Get the target length
|
213 |
+
target_length = input_ids.shape[1]
|
214 |
+
past_length = first_layer_past_key_value.shape[-1]
|
215 |
+
|
216 |
+
extended_attention_mask = torch.ones(
|
217 |
+
(attention_mask.shape[0], past_length),
|
218 |
+
dtype=attention_mask.dtype,
|
219 |
+
device=attention_mask.device,
|
220 |
+
)
|
221 |
+
|
222 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
223 |
+
# if one uses Llava + Fused modules where the cache on the
|
224 |
+
# first iteration is already big enough, or if one passes custom cache
|
225 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
226 |
+
new_batch_index = batch_index[valid_indices]
|
227 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
228 |
+
|
229 |
+
# Zero-out the places where we don't need to attend
|
230 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
231 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
232 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
233 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
|
234 |
+
-target_length:
|
235 |
+
]
|
236 |
+
|
237 |
+
# TODO: @raushan retain only the new behavior after v4.47
|
238 |
+
else:
|
239 |
+
special_image_mask = (
|
240 |
+
(input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
|
241 |
+
)
|
242 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
243 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
244 |
+
|
245 |
+
outputs = self.language_model(
|
246 |
+
attention_mask=attention_mask,
|
247 |
+
position_ids=position_ids,
|
248 |
+
past_key_values=past_key_values,
|
249 |
+
inputs_embeds=inputs_embeds,
|
250 |
+
use_cache=use_cache,
|
251 |
+
output_attentions=output_attentions,
|
252 |
+
output_hidden_states=output_hidden_states,
|
253 |
+
return_dict=return_dict,
|
254 |
+
cache_position=cache_position,
|
255 |
+
num_logits_to_keep=num_logits_to_keep,
|
256 |
+
)
|
257 |
+
|
258 |
+
return outputs
|
259 |
+
|
260 |
+
def set_processor(self, model_name):
|
261 |
+
self.processor = LlavaNextProcessor.from_pretrained(model_name)
|
262 |
+
def prepare_text_input(self, image=None, text=None, q_or_c=None, task_instruction=None):
|
263 |
+
task_instruction_example_cir = "Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
|
264 |
+
|
265 |
+
assert q_or_c in ["query", "candidate", "q", "c"]
|
266 |
+
|
267 |
+
if "q" in q_or_c:
|
268 |
+
if task_instruction is None:
|
269 |
+
text_input = "[INST] \n <instruct> <query>"
|
270 |
+
print(f"""
|
271 |
+
Warning: For optimal performance, MMRet-MLLM requires the task instruction to be specified in the query.
|
272 |
+
For example, for the composed image retrieval task, you might use a specific instruction like: {task_instruction_example_cir}.
|
273 |
+
Instructions for other tasks can be referenced in the MMEB benchmark.
|
274 |
+
""")
|
275 |
+
elif task_instruction is not None:
|
276 |
+
text_input = f"[INST] \n <instruct> {task_instruction} <query> "
|
277 |
+
|
278 |
+
if text is not None:
|
279 |
+
text_input = f"{text_input} {text} \n"
|
280 |
+
if image is not None:
|
281 |
+
text_input = f"{text_input} <image>"
|
282 |
+
|
283 |
+
text_input = f"{text_input} [/INST]"
|
284 |
+
else:
|
285 |
+
text_input = "[INST] "
|
286 |
+
if text is not None:
|
287 |
+
text_input = f"{text_input} {text} \n"
|
288 |
+
if image is not None:
|
289 |
+
text_input = f"{text_input} <image>"
|
290 |
+
text_input = f"{text_input} [/INST]"
|
291 |
+
|
292 |
+
return text_input
|
293 |
+
|
294 |
+
def data_process(self, images=None, text=None, q_or_c=None, task_instruction=None):
|
295 |
+
if images is not None:
|
296 |
+
_is_list = isinstance(images, list)
|
297 |
+
elif text is not None:
|
298 |
+
_is_list = isinstance(text, list)
|
299 |
+
else:
|
300 |
+
raise ValueError("images and text cannot be both None.")
|
301 |
+
|
302 |
+
assert q_or_c in ["query", "candidate", "q", "c"]
|
303 |
+
|
304 |
+
if not _is_list :
|
305 |
+
text_input = self.prepare_text_input(images, text, q_or_c, task_instruction)
|
306 |
+
text_input = [text_input]
|
307 |
+
|
308 |
+
|
309 |
+
if images is not None:
|
310 |
+
images = Image.open(images).resize((512,512)).convert("RGB")
|
311 |
+
images = [images]
|
312 |
+
inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
|
313 |
+
else:
|
314 |
+
inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
|
315 |
+
|
316 |
+
else:
|
317 |
+
if text is None:
|
318 |
+
text = [None] * len(images)
|
319 |
+
text_input = [self.prepare_text_input(_image, _text, q_or_c, task_instruction) for _image, _text in zip(images, text)]
|
320 |
+
|
321 |
+
if images is not None:
|
322 |
+
images = [Image.open(_image).resize((512,512)).convert("RGB") for _image in images]
|
323 |
+
inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
|
324 |
+
else:
|
325 |
+
inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
|
326 |
+
|
327 |
+
inputs = inputs.to(self.device)
|
328 |
+
|
329 |
+
return inputs
|
preprocessor_config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"aspect_ratio_setting": "anyres",
|
3 |
+
"crop_size": {
|
4 |
+
"height": 336,
|
5 |
+
"width": 336
|
6 |
+
},
|
7 |
+
"do_center_crop": true,
|
8 |
+
"do_convert_rgb": true,
|
9 |
+
"do_normalize": true,
|
10 |
+
"do_pad": true,
|
11 |
+
"do_rescale": true,
|
12 |
+
"do_resize": true,
|
13 |
+
"image_grid_pinpoints": [
|
14 |
+
[
|
15 |
+
336,
|
16 |
+
672
|
17 |
+
],
|
18 |
+
[
|
19 |
+
672,
|
20 |
+
336
|
21 |
+
],
|
22 |
+
[
|
23 |
+
672,
|
24 |
+
672
|
25 |
+
],
|
26 |
+
[
|
27 |
+
1008,
|
28 |
+
336
|
29 |
+
],
|
30 |
+
[
|
31 |
+
336,
|
32 |
+
1008
|
33 |
+
]
|
34 |
+
],
|
35 |
+
"image_mean": [
|
36 |
+
0.48145466,
|
37 |
+
0.4578275,
|
38 |
+
0.40821073
|
39 |
+
],
|
40 |
+
"image_processor_type": "LlavaNextImageProcessor",
|
41 |
+
"image_std": [
|
42 |
+
0.26862954,
|
43 |
+
0.26130258,
|
44 |
+
0.27577711
|
45 |
+
],
|
46 |
+
"processor_class": "LlavaNextProcessor",
|
47 |
+
"resample": 3,
|
48 |
+
"rescale_factor": 0.00392156862745098,
|
49 |
+
"size": {
|
50 |
+
"shortest_edge": 336
|
51 |
+
}
|
52 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<instruct>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<query_txt_img>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "<target_img>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"bos_token": {
|
26 |
+
"content": "<s>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"eos_token": {
|
33 |
+
"content": "</s>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
"pad_token": {
|
40 |
+
"content": "<pad>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
},
|
46 |
+
"unk_token": {
|
47 |
+
"content": "<unk>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false
|
52 |
+
}
|
53 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": true,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<image>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "<pad>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<instruct>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<query_txt_img>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<target_img>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"additional_special_tokens": [
|
72 |
+
"<instruct>",
|
73 |
+
"<query_txt_img>",
|
74 |
+
"<target_img>"
|
75 |
+
],
|
76 |
+
"bos_token": "<s>",
|
77 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
78 |
+
"clean_up_tokenization_spaces": false,
|
79 |
+
"eos_token": "</s>",
|
80 |
+
"legacy": true,
|
81 |
+
"max_length": null,
|
82 |
+
"model_max_length": 1000000000000000019884624838656,
|
83 |
+
"pad_to_multiple_of": null,
|
84 |
+
"pad_token": "<pad>",
|
85 |
+
"pad_token_type_id": 0,
|
86 |
+
"padding_side": "left",
|
87 |
+
"processor_class": "LlavaNextProcessor",
|
88 |
+
"sp_model_kwargs": {},
|
89 |
+
"spaces_between_special_tokens": false,
|
90 |
+
"tokenizer_class": "LlamaTokenizer",
|
91 |
+
"unk_token": "<unk>",
|
92 |
+
"use_default_system_prompt": false
|
93 |
+
}
|