JUNJIE99 commited on
Commit
e7c285d
·
verified ·
1 Parent(s): b221876

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/cir_candi_2.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/cir_query.png filter=lfs diff=lfs merge=lfs -text
38
+ assets/res-ft-mmeb.png filter=lfs diff=lfs merge=lfs -text
39
+ assets/res-scaling.png filter=lfs diff=lfs merge=lfs -text
40
+ assets/res-zs-cir.png filter=lfs diff=lfs merge=lfs -text
41
+ assets/res-zs-mmeb.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,167 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - llava-hf/llava-v1.6-mistral-7b-hf
7
+ tags:
8
+ - multimodal-retrieval
9
+ - embedding-model
10
+ ---
11
+ <h1 align="center">MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval</h1>
12
+
13
+ <p align="center">
14
+ <a href="https://arxiv.org/abs/2412.14475">
15
+ <img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2412.14475-B31B1B.svg">
16
+ </a>
17
+ <a href="https://github.com/VectorSpaceLab/MegaPairs">
18
+ <img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
19
+ </a>
20
+ <a href="https://huggingface.co/datasets/JUNJIE99/MegaPairs">
21
+ <img alt="Build" src="https://img.shields.io/badge/🤗 Datasets-MegaPairs-yellow">
22
+ </p>
23
+
24
+ <p align="center">
25
+ </a>
26
+ <a href="https://huggingface.co/JUNJIE99/MMRet-base">
27
+ <img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_base-yellow">
28
+ </a>
29
+ <a href="https://huggingface.co/JUNJIE99/MMRet-large">
30
+ <img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_large-yellow">
31
+ </a>
32
+ <a href="https://huggingface.co/JUNJIE99/MMRet-MLLM-S1">
33
+ <img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_MLLM_S1-yellow">
34
+ </a>
35
+ <a href="https://huggingface.co/JUNJIE99/MMRet-MLLM-S2">
36
+ <img alt="Build" src="https://img.shields.io/badge/🤗 Model-MMRet_MLLM_S2-yellow">
37
+ </a>
38
+ </p>
39
+
40
+ ## News
41
+ ```2024-3-4``` 🚀🚀 We have released the MMRet-MLLM models on Hugging Face: [MMRet-MLLM-S1](https://huggingface.co/JUNJIE99/MMRet-MLLM-S1) and [MMRet-MLLM-S2](https://huggingface.co/JUNJIE99/MMRet-MLLM-S2). **MMRet-MLLM-S1** is trained exclusively on our MegaPairs dataset, achieving outstanding performance in composed image retrieval, with an 8.1% improvement on the CIRCO benchmark (mAP@5) over the previous state-of-the-art. **MMRet-MLLM-S2** builds on MMRet-MLLM-S1 with an additional epoch of fine-tuning on the MMEB benchmark training set, delivering enhanced performance across a broader range of multimodal embedding tasks.
42
+
43
+ ```2024-12-27``` 🚀🚀 MMRet-CLIP models are released in Huggingface: [MMRet-base](https://huggingface.co/JUNJIE99/MMRet-base) and [MMRet-large](https://huggingface.co/JUNJIE99/MMRet-large).
44
+
45
+ ```2024-12-19``` 🎉🎉 Release our paper: [MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval](https://arxiv.org/pdf/2412.14475).
46
+
47
+ ## Release Plan
48
+ - [x] Paper
49
+ - [x] MMRet-base and MMRet-large models
50
+ - [x] MMRet-MLLM model
51
+ - [ ] MegaPairs Dataset
52
+ - [ ] Evaluation code
53
+ - [ ] Fine-tuning code
54
+
55
+
56
+ ## Introduction
57
+ In this project, we introduce **MegaPairs**, a novel data synthesis method that leverages open-domain images to create *heterogeneous KNN triplets* for universal multimodal retrieval. Our MegaPairs dataset contains over 26 million triplets, and we have trained a series of multimodal retrieval models, **MMRets**, including MMRet-CLIP (base and large) and MMRet-MLLM.
58
+
59
+ MMRets achieve state-of-the-art performance on four popular zero-shot composed image retrieval benchmarks and the massive multimodal embedding benchmark (MMEB). Extensive experiments demonstrate the ***efficiency, scalability, and generalization*** features of MegaPairs. Please refer to our [paper](https://arxiv.org/abs/2412.14475) for more details.
60
+
61
+ ## Model Usage
62
+
63
+ ### 1. MMRet-CLIP Models
64
+ You can easily use MMRet-CLIP models based on ```transformers```
65
+ ```python
66
+ import torch
67
+ from transformers import AutoModel
68
+
69
+ MODEL_NAME = "JUNJIE99/MMRet-base" # or "JUNJIE99/MMRet-large"
70
+
71
+ model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
72
+ model.set_processor(MODEL_NAME)
73
+ model.eval()
74
+
75
+ with torch.no_grad():
76
+ query = model.encode(
77
+ images = "./assets/cir_query.png",
78
+ text = "Make the background dark, as if the camera has taken the photo at night"
79
+ )
80
+
81
+ candidates = model.encode(
82
+ images = ["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"]
83
+ )
84
+
85
+ scores = query @ candidates.T
86
+ print(scores)
87
+ ```
88
+
89
+ ### 2. MMRet-MLLM Models
90
+ ```python
91
+ import torch
92
+ from transformers import AutoModel
93
+ from PIL import Image
94
+
95
+ MODEL_NAME= "JUNJIE99/MMRet-MLLM-S1"
96
+
97
+ model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
98
+ model.eval()
99
+ model.cuda()
100
+
101
+ with torch.no_grad():
102
+ model.set_processor(MODEL_NAME)
103
+
104
+ query_inputs = model.data_process(
105
+ text="Make the background dark, as if the camera has taken the photo at night",
106
+ images="./assets/cir_query.png",
107
+ q_or_c="q",
108
+ task_instruction="Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
109
+ )
110
+
111
+ candidate_inputs = model.data_process(
112
+ images=["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"],
113
+ q_or_c="c",
114
+ )
115
+
116
+ query_embs = model(**query_inputs, output_hidden_states=True)[:, -1, :]
117
+ candi_embs = model(**candidate_inputs, output_hidden_states=True)[:, -1, :]
118
+
119
+ query_embs = torch.nn.functional.normalize(query_embs, dim=-1)
120
+ candi_embs = torch.nn.functional.normalize(candi_embs, dim=-1)
121
+
122
+ scores = torch.matmul(query_embs, candi_embs.T)
123
+ print(scores)
124
+ ```
125
+
126
+
127
+ ## Model Performance
128
+ ### Zero-Shot Composed Image Retrieval
129
+
130
+ MMRet sets a new performance benchmark in zero-shot composed image retrieval tasks. On the CIRCO benchmark, our MMRet-base model, with only 149 million parameters, surpasses all previous models, including those with 50 times more parameters. Additionally, MMRet-MLLM achieves an 8.1% improvement over the previous state-of-the-art model.
131
+
132
+ <img src="./assets/res-zs-cir.png" width="800">
133
+
134
+ ### Zero-Shot Performance on MMEB
135
+
136
+ MMRet-MLLM achieves state-of-the-art zero-shot performance on the Massive Multimodal Embedding Benchmark (MMEB), despite being trained only on the ImageText-to-Image paradigm. This demonstrates the excellent generalization capability of MegaPairs for multimodal embedding.
137
+
138
+ <img src="./assets/res-zs-mmeb.png" width="800">
139
+
140
+ ### Fine-Tuning Performance on MMEB
141
+
142
+ After fine-tuning on downstream tasks, MMRet-MLLM maintains its leading performance. Notably, it surpasses the previous state-of-the-art by 7.1% on the MMEB out-of-distribution (OOD) set. These results demonstrate the robust generalization capability of MMRet-MLLM and highlight the potential of MegaPairs as foundational training data for universal multimodal embedding.
143
+
144
+ <img src="./assets/res-ft-mmeb.png" width="800">
145
+
146
+ ### Performance Scaling
147
+ MegaPairs showcases **scalability**: MMRet-base improves as training data increases. It also demonstrates **efficiency**: with just 0.5M training samples, MMRet-base significantly outperforms MagicLens, which uses the same CLIP-base backbone and was trained on 36.7M samples.
148
+
149
+ <img src="./assets/res-scaling.png" width="800">
150
+
151
+
152
+ ## License
153
+ The annotations for MegaPairs and the MMRet models are released under the [MIT License](LICENSE). The images in MegaPairs originate from the [Recap-Datacomp](https://huggingface.co/datasets/UCSC-VLAA/Recap-DataComp-1B), which is released under the CC BY 4.0 license.
154
+
155
+
156
+
157
+ ## Citation
158
+ If you find this repository useful, please consider giving a star ⭐ and citation
159
+
160
+ ```
161
+ @article{zhou2024megapairs,
162
+ title={MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval},
163
+ author={Zhou, Junjie and Liu, Zheng and Liu, Ze and Xiao, Shitao and Wang, Yueze and Zhao, Bo and Zhang, Chen Jason and Lian, Defu and Xiong, Yongping},
164
+ journal={arXiv preprint arXiv:2412.14475},
165
+ year={2024}
166
+ }
167
+ ```
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 32000,
3
+ "<instruct>": 32002,
4
+ "<pad>": 32001,
5
+ "<query_txt_img>": 32003,
6
+ "<target_img>": 32004
7
+ }
assets/cir_candi_1.png ADDED
assets/cir_candi_2.png ADDED

Git LFS Details

  • SHA256: e3c4b3debd66d4789545d52bdd4c18bdbabaa072b69110ad08ff54b7b4503557
  • Pointer size: 131 Bytes
  • Size of remote file: 901 kB
assets/cir_query.png ADDED

Git LFS Details

  • SHA256: 42ad0e1200ba5c8767ea752f6358f6b51719674b064666b415b6ab0ea90ae62b
  • Pointer size: 131 Bytes
  • Size of remote file: 153 kB
assets/res-ft-mmeb.png ADDED

Git LFS Details

  • SHA256: 7011ea195b7e51c1e206c735072ec5d2acb96a5aa22fb7ff280523be21c2ba0f
  • Pointer size: 131 Bytes
  • Size of remote file: 208 kB
assets/res-scaling.png ADDED

Git LFS Details

  • SHA256: ad36953de26851baac1ac625467d87517d5151714104a92cc89f421d2c7326f0
  • Pointer size: 131 Bytes
  • Size of remote file: 144 kB
assets/res-zs-cir.png ADDED

Git LFS Details

  • SHA256: 61da2bc03b36c97c48d3e52bb96ccaecbb99d5d913847f665cbcd2d6a84435df
  • Pointer size: 131 Bytes
  • Size of remote file: 506 kB
assets/res-zs-mmeb.png ADDED

Git LFS Details

  • SHA256: 9e3fb656f33f9b2ff4290d9a900a6bcec40c3df97ff308cdfef82a62209bbf97
  • Pointer size: 131 Bytes
  • Size of remote file: 251 kB
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlavaNextForConditionalGeneration"
4
+ ],
5
+ "ignore_index": -100,
6
+ "auto_map": {
7
+ "AutoModel": "modeling_llavanext_for_embedding.LLaVANextForEmbedding"
8
+ },
9
+ "image_grid_pinpoints": [
10
+ [
11
+ 336,
12
+ 672
13
+ ],
14
+ [
15
+ 672,
16
+ 336
17
+ ],
18
+ [
19
+ 672,
20
+ 672
21
+ ],
22
+ [
23
+ 1008,
24
+ 336
25
+ ],
26
+ [
27
+ 336,
28
+ 1008
29
+ ]
30
+ ],
31
+ "image_token_index": 32000,
32
+ "model_type": "llava_next",
33
+ "projector_hidden_act": "gelu",
34
+ "text_config": {
35
+ "_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
36
+ "architectures": [
37
+ "MistralForCausalLM"
38
+ ],
39
+ "intermediate_size": 14336,
40
+ "max_position_embeddings": 32768,
41
+ "model_type": "mistral",
42
+ "num_key_value_heads": 8,
43
+ "rms_norm_eps": 1e-05,
44
+ "rope_theta": 1000000.0,
45
+ "sliding_window": null,
46
+ "torch_dtype": "bfloat16",
47
+ "vocab_size": 32005
48
+ },
49
+ "torch_dtype": "float16",
50
+ "transformers_version": "4.39.0.dev0",
51
+ "use_image_newline_parameter": true,
52
+ "vision_config": {
53
+ "hidden_size": 1024,
54
+ "image_size": 336,
55
+ "intermediate_size": 4096,
56
+ "model_type": "clip_vision_model",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 24,
59
+ "patch_size": 14,
60
+ "projection_dim": 768,
61
+ "vocab_size": 32000
62
+ },
63
+ "vision_feature_layer": -2,
64
+ "vision_feature_select_strategy": "default",
65
+ "vocab_size": 32005
66
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.45.2"
6
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4f364034c36c069d5c18b32892225fba7bfa38e5b9db7bb4b80db18890c5612
3
+ size 4921134816
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d113162bfad03747144fb2cb8f021ea548234f7ae4783381b2d71f8826e097d8
3
+ size 4915917568
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51039841f598d5531a29a0e696fe1012144d6215eb468bfaecc605da4fb65065
3
+ size 4915917576
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4868cc980cc6d493640ac26409c0bcab989bd9e71e8ec00c4547f57b2473804c
3
+ size 379650680
model.safetensors.index.json ADDED
@@ -0,0 +1,694 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15132528640
4
+ },
5
+ "weight_map": {
6
+ "image_newline": "model-00001-of-00004.safetensors",
7
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
28
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
29
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
30
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
31
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
118
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
119
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
120
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
121
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
122
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
123
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
124
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
125
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
126
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
127
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
128
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
129
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
132
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
133
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
134
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
135
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
153
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
154
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
155
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
156
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
157
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
158
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
161
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
162
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
164
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
216
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
221
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
222
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
223
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
224
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
225
+ "language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
235
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
236
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
239
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
243
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
244
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
245
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
246
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
247
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
248
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
249
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
250
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
251
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
252
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
254
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
255
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
256
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
258
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
259
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
260
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
270
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
273
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
274
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
279
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
280
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
281
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
282
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
283
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
284
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
285
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
286
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
287
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
288
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
290
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
291
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
292
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
293
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
294
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
295
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
296
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors",
298
+ "multi_modal_projector.linear_1.bias": "model-00001-of-00004.safetensors",
299
+ "multi_modal_projector.linear_1.weight": "model-00001-of-00004.safetensors",
300
+ "multi_modal_projector.linear_2.bias": "model-00001-of-00004.safetensors",
301
+ "multi_modal_projector.linear_2.weight": "model-00001-of-00004.safetensors",
302
+ "vision_tower.vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
303
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
304
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
305
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
306
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
307
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
308
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
309
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
310
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
311
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
312
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
313
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
316
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
317
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
318
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
319
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
320
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
321
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
322
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
323
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
324
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
325
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
326
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
327
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
328
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
329
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
330
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
331
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
332
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
333
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
334
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
335
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
336
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
337
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
338
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
339
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
340
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
341
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
342
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
343
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
344
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
345
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
346
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
347
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
348
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
349
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
350
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
351
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
352
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
353
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
354
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
355
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
356
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
357
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
358
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
359
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
360
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
361
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
362
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
363
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
364
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
365
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
366
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
367
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
368
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
369
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
370
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
371
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
372
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
373
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
374
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
375
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
376
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
377
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
378
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
379
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
380
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
381
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
382
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
383
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
384
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
385
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
386
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
387
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
388
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
389
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
390
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
391
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
392
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
393
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
394
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
395
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
396
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
397
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
398
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
399
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
400
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
401
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
402
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
403
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
404
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
405
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
406
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
407
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
408
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
409
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
410
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
411
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
412
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
413
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
414
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
415
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
416
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
417
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
418
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
419
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
420
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
421
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
422
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
423
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
424
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
425
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
426
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
427
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
428
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
429
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
430
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
431
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
432
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
433
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
434
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
435
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
436
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
437
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
438
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
439
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
440
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
441
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
442
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
443
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
444
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
445
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
446
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
447
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
448
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
449
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
454
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
455
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
689
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
690
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors",
691
+ "vision_tower.vision_model.pre_layrnorm.bias": "model-00001-of-00004.safetensors",
692
+ "vision_tower.vision_model.pre_layrnorm.weight": "model-00001-of-00004.safetensors"
693
+ }
694
+ }
modeling_llavanext_for_embedding.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import transformers
3
+ from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, AutoModel
4
+ import torch
5
+ from PIL import Image
6
+ import requests
7
+ from typing import List, Optional, Tuple, Union
8
+ from transformers.cache_utils import Cache
9
+ from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ def my_mistral_forward(
15
+ self,
16
+ input_ids: torch.LongTensor = None,
17
+ attention_mask: Optional[torch.Tensor] = None,
18
+ position_ids: Optional[torch.LongTensor] = None,
19
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
20
+ inputs_embeds: Optional[torch.FloatTensor] = None,
21
+ labels: Optional[torch.LongTensor] = None,
22
+ use_cache: Optional[bool] = None,
23
+ output_attentions: Optional[bool] = None,
24
+ output_hidden_states: Optional[bool] = None,
25
+ return_dict: Optional[bool] = None,
26
+ cache_position: Optional[torch.LongTensor] = None,
27
+ num_logits_to_keep: int = 0,
28
+ ):
29
+ r"""
30
+ Args:
31
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
32
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
33
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
34
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
35
+
36
+ num_logits_to_keep (`int`, *optional*):
37
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
38
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
39
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
40
+
41
+ Returns:
42
+
43
+ Example:
44
+
45
+ ```python
46
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
47
+
48
+ >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
49
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
50
+
51
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
52
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
53
+
54
+ >>> # Generate
55
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
56
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
57
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
58
+ ```"""
59
+
60
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
+ output_hidden_states = (
62
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
+ )
64
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
+
66
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
+ outputs = self.model(
68
+ input_ids=input_ids,
69
+ attention_mask=attention_mask,
70
+ position_ids=position_ids,
71
+ past_key_values=past_key_values,
72
+ inputs_embeds=inputs_embeds,
73
+ use_cache=use_cache,
74
+ output_attentions=output_attentions,
75
+ output_hidden_states=output_hidden_states,
76
+ return_dict=return_dict,
77
+ cache_position=cache_position,
78
+ )
79
+
80
+ hidden_states = outputs[0]
81
+
82
+ return hidden_states
83
+
84
+
85
+ def transfer_mistral_forward():
86
+ transformers.models.mistral.MistralForCausalLM.forward = my_mistral_forward
87
+
88
+ class LLaVANextForEmbedding(LlavaNextForConditionalGeneration):
89
+ def __init__(self, config):
90
+ super().__init__(config)
91
+
92
+ transfer_mistral_forward()
93
+ def forward(
94
+ self,
95
+ input_ids: torch.LongTensor = None,
96
+ pixel_values: torch.FloatTensor = None,
97
+ image_sizes: Optional[torch.LongTensor] = None,
98
+ attention_mask: Optional[torch.Tensor] = None,
99
+ position_ids: Optional[torch.LongTensor] = None,
100
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
101
+ inputs_embeds: Optional[torch.FloatTensor] = None,
102
+ vision_feature_layer: Optional[int] = None,
103
+ vision_feature_select_strategy: Optional[str] = None,
104
+ labels: Optional[torch.LongTensor] = None,
105
+ use_cache: Optional[bool] = None,
106
+ output_attentions: Optional[bool] = None,
107
+ output_hidden_states: Optional[bool] = None,
108
+ return_dict: Optional[bool] = None,
109
+ cache_position: Optional[torch.LongTensor] = None,
110
+ num_logits_to_keep: int = 0,
111
+ ):
112
+
113
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
114
+ output_hidden_states = (
115
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
116
+ )
117
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
118
+ vision_feature_layer = (
119
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
120
+ )
121
+ vision_feature_select_strategy = (
122
+ vision_feature_select_strategy
123
+ if vision_feature_select_strategy is not None
124
+ else self.config.vision_feature_select_strategy
125
+ )
126
+
127
+ if (input_ids is None) ^ (inputs_embeds is not None):
128
+ raise ValueError(
129
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
130
+ )
131
+
132
+ if pixel_values is not None and inputs_embeds is not None:
133
+ raise ValueError(
134
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
135
+ )
136
+
137
+ legacy_processing = False
138
+ if inputs_embeds is None:
139
+ inputs_embeds = self.get_input_embeddings()(input_ids)
140
+
141
+ # if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
142
+ # not very reliable, but we don't expect one to actually pass 500+ images for one prompt
143
+ # In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
144
+ legacy_processing = (
145
+ (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
146
+ ) or (input_ids.shape[-1] == 1 and pixel_values is not None)
147
+
148
+ if pixel_values is not None and pixel_values.size(0) > 0:
149
+ # ! infer image_num_patches from image_sizes
150
+ image_num_patches = [
151
+ image_size_to_num_patches(
152
+ image_size=imsize,
153
+ grid_pinpoints=self.config.image_grid_pinpoints,
154
+ patch_size=self.config.vision_config.image_size,
155
+ )
156
+ for imsize in image_sizes
157
+ ]
158
+ # figure out if pixel_values is concatenated or stacked
159
+ if pixel_values.dim() == 5:
160
+ # stacking when input is (batch_size, num_patches, num_channels, height, width)
161
+ _pixel_values_list = [
162
+ pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
163
+ ]
164
+ pixel_values = torch.cat(_pixel_values_list, dim=0)
165
+ elif pixel_values.dim() != 4:
166
+ # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
167
+ raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
168
+
169
+ image_features = self.vision_tower(pixel_values, output_hidden_states=True)
170
+ selected_image_feature = image_features.hidden_states[vision_feature_layer]
171
+ if vision_feature_select_strategy == "default":
172
+ selected_image_feature = selected_image_feature[:, 1:]
173
+ elif vision_feature_select_strategy == "full":
174
+ selected_image_feature = selected_image_feature
175
+ image_features = self.multi_modal_projector(selected_image_feature)
176
+ image_features = torch.split(image_features, image_num_patches, dim=0)
177
+
178
+ # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
179
+ image_features, feature_lens = self.pack_image_features(
180
+ image_features,
181
+ image_sizes,
182
+ vision_feature_select_strategy=vision_feature_select_strategy,
183
+ image_newline=self.image_newline,
184
+ )
185
+ if legacy_processing:
186
+ logger.warning_once(
187
+ "Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
188
+ "Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
189
+ "with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
190
+ "Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
191
+ )
192
+ if input_ids.shape[1] != 1:
193
+ inputs_embeds = inputs_embeds.to(image_features.dtype)
194
+ inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
195
+ image_features,
196
+ feature_lens,
197
+ inputs_embeds,
198
+ input_ids,
199
+ attention_mask,
200
+ position_ids,
201
+ labels=labels,
202
+ )
203
+ cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
204
+ else:
205
+ # Retrieve the first layer to inspect the logits and mask out the hidden states
206
+ # that are set to 0
207
+ first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
208
+
209
+ # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
210
+ batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
211
+
212
+ # Get the target length
213
+ target_length = input_ids.shape[1]
214
+ past_length = first_layer_past_key_value.shape[-1]
215
+
216
+ extended_attention_mask = torch.ones(
217
+ (attention_mask.shape[0], past_length),
218
+ dtype=attention_mask.dtype,
219
+ device=attention_mask.device,
220
+ )
221
+
222
+ # Filter out only the tokens that can be un-attended, this can happen
223
+ # if one uses Llava + Fused modules where the cache on the
224
+ # first iteration is already big enough, or if one passes custom cache
225
+ valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
226
+ new_batch_index = batch_index[valid_indices]
227
+ new_non_attended_tokens = non_attended_tokens[valid_indices]
228
+
229
+ # Zero-out the places where we don't need to attend
230
+ extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
231
+ attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
232
+ position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
233
+ cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
234
+ -target_length:
235
+ ]
236
+
237
+ # TODO: @raushan retain only the new behavior after v4.47
238
+ else:
239
+ special_image_mask = (
240
+ (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
241
+ )
242
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
243
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
244
+
245
+ outputs = self.language_model(
246
+ attention_mask=attention_mask,
247
+ position_ids=position_ids,
248
+ past_key_values=past_key_values,
249
+ inputs_embeds=inputs_embeds,
250
+ use_cache=use_cache,
251
+ output_attentions=output_attentions,
252
+ output_hidden_states=output_hidden_states,
253
+ return_dict=return_dict,
254
+ cache_position=cache_position,
255
+ num_logits_to_keep=num_logits_to_keep,
256
+ )
257
+
258
+ return outputs
259
+
260
+ def set_processor(self, model_name):
261
+ self.processor = LlavaNextProcessor.from_pretrained(model_name)
262
+ def prepare_text_input(self, image=None, text=None, q_or_c=None, task_instruction=None):
263
+ task_instruction_example_cir = "Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
264
+
265
+ assert q_or_c in ["query", "candidate", "q", "c"]
266
+
267
+ if "q" in q_or_c:
268
+ if task_instruction is None:
269
+ text_input = "[INST] \n <instruct> <query>"
270
+ print(f"""
271
+ Warning: For optimal performance, MMRet-MLLM requires the task instruction to be specified in the query.
272
+ For example, for the composed image retrieval task, you might use a specific instruction like: {task_instruction_example_cir}.
273
+ Instructions for other tasks can be referenced in the MMEB benchmark.
274
+ """)
275
+ elif task_instruction is not None:
276
+ text_input = f"[INST] \n <instruct> {task_instruction} <query> "
277
+
278
+ if text is not None:
279
+ text_input = f"{text_input} {text} \n"
280
+ if image is not None:
281
+ text_input = f"{text_input} <image>"
282
+
283
+ text_input = f"{text_input} [/INST]"
284
+ else:
285
+ text_input = "[INST] "
286
+ if text is not None:
287
+ text_input = f"{text_input} {text} \n"
288
+ if image is not None:
289
+ text_input = f"{text_input} <image>"
290
+ text_input = f"{text_input} [/INST]"
291
+
292
+ return text_input
293
+
294
+ def data_process(self, images=None, text=None, q_or_c=None, task_instruction=None):
295
+ if images is not None:
296
+ _is_list = isinstance(images, list)
297
+ elif text is not None:
298
+ _is_list = isinstance(text, list)
299
+ else:
300
+ raise ValueError("images and text cannot be both None.")
301
+
302
+ assert q_or_c in ["query", "candidate", "q", "c"]
303
+
304
+ if not _is_list :
305
+ text_input = self.prepare_text_input(images, text, q_or_c, task_instruction)
306
+ text_input = [text_input]
307
+
308
+
309
+ if images is not None:
310
+ images = Image.open(images).resize((512,512)).convert("RGB")
311
+ images = [images]
312
+ inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
313
+ else:
314
+ inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
315
+
316
+ else:
317
+ if text is None:
318
+ text = [None] * len(images)
319
+ text_input = [self.prepare_text_input(_image, _text, q_or_c, task_instruction) for _image, _text in zip(images, text)]
320
+
321
+ if images is not None:
322
+ images = [Image.open(_image).resize((512,512)).convert("RGB") for _image in images]
323
+ inputs = self.processor(images=images, text=text_input, return_tensors="pt", padding=True)
324
+ else:
325
+ inputs = self.processor(text=text_input, return_tensors="pt", padding=True)
326
+
327
+ inputs = inputs.to(self.device)
328
+
329
+ return inputs
preprocessor_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "aspect_ratio_setting": "anyres",
3
+ "crop_size": {
4
+ "height": 336,
5
+ "width": 336
6
+ },
7
+ "do_center_crop": true,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_pad": true,
11
+ "do_rescale": true,
12
+ "do_resize": true,
13
+ "image_grid_pinpoints": [
14
+ [
15
+ 336,
16
+ 672
17
+ ],
18
+ [
19
+ 672,
20
+ 336
21
+ ],
22
+ [
23
+ 672,
24
+ 672
25
+ ],
26
+ [
27
+ 1008,
28
+ 336
29
+ ],
30
+ [
31
+ 336,
32
+ 1008
33
+ ]
34
+ ],
35
+ "image_mean": [
36
+ 0.48145466,
37
+ 0.4578275,
38
+ 0.40821073
39
+ ],
40
+ "image_processor_type": "LlavaNextImageProcessor",
41
+ "image_std": [
42
+ 0.26862954,
43
+ 0.26130258,
44
+ 0.27577711
45
+ ],
46
+ "processor_class": "LlavaNextProcessor",
47
+ "resample": 3,
48
+ "rescale_factor": 0.00392156862745098,
49
+ "size": {
50
+ "shortest_edge": 336
51
+ }
52
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<instruct>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<query_txt_img>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ {
18
+ "content": "<target_img>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ ],
25
+ "bos_token": {
26
+ "content": "<s>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "eos_token": {
33
+ "content": "</s>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "pad_token": {
40
+ "content": "<pad>",
41
+ "lstrip": false,
42
+ "normalized": false,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ },
46
+ "unk_token": {
47
+ "content": "<unk>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false
52
+ }
53
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": true,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<image>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<pad>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<instruct>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<query_txt_img>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<target_img>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ }
70
+ },
71
+ "additional_special_tokens": [
72
+ "<instruct>",
73
+ "<query_txt_img>",
74
+ "<target_img>"
75
+ ],
76
+ "bos_token": "<s>",
77
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
78
+ "clean_up_tokenization_spaces": false,
79
+ "eos_token": "</s>",
80
+ "legacy": true,
81
+ "max_length": null,
82
+ "model_max_length": 1000000000000000019884624838656,
83
+ "pad_to_multiple_of": null,
84
+ "pad_token": "<pad>",
85
+ "pad_token_type_id": 0,
86
+ "padding_side": "left",
87
+ "processor_class": "LlavaNextProcessor",
88
+ "sp_model_kwargs": {},
89
+ "spaces_between_special_tokens": false,
90
+ "tokenizer_class": "LlamaTokenizer",
91
+ "unk_token": "<unk>",
92
+ "use_default_system_prompt": false
93
+ }