ZiyiXia commited on
Commit
a407e8b
Β·
verified Β·
1 Parent(s): 628d46c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -24
README.md CHANGED
@@ -8,60 +8,66 @@ tags:
8
  - multimodal-retrieval
9
  - embedding-model
10
  ---
 
11
  <h1 align="center">MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval</h1>
12
 
13
  <p align="center">
14
  <a href="https://arxiv.org/abs/2412.14475">
15
- <img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2412.14475-B31B1B.svg">
16
  </a>
17
  <a href="https://github.com/VectorSpaceLab/MegaPairs">
18
  <img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
19
  </a>
20
- <a href="https://huggingface.co/datasets/JUNJIE99/MegaPairs">
21
  <img alt="Build" src="https://img.shields.io/badge/πŸ€— Datasets-MegaPairs-yellow">
22
  </p>
23
 
24
  <p align="center">
25
  </a>
26
- <a href="https://huggingface.co/JUNJIE99/MMRet-base">
27
- <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-MMRet_base-yellow">
 
 
 
28
  </a>
29
- <a href="https://huggingface.co/JUNJIE99/MMRet-large">
30
- <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-MMRet_large-yellow">
31
  </a>
32
- <a href="https://huggingface.co/JUNJIE99/MMRet-MLLM">
33
- <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-MMRet_MLLM-yellow">
34
  </a>
35
  </p>
36
 
37
  ## News
38
- ```2024-12-27``` πŸš€πŸš€ MMRet-CLIP models are released in Huggingface: [MMRet-base](https://huggingface.co/JUNJIE99/MMRet-base) and [MMRet-large](https://huggingface.co/JUNJIE99/MMRet-large).
 
 
39
 
40
  ```2024-12-19``` πŸŽ‰πŸŽ‰ Release our paper: [MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval](https://arxiv.org/pdf/2412.14475).
41
 
42
  ## Release Plan
43
  - [x] Paper
44
- - [x] MMRet-base and MMRet-large models
45
- - [ ] MMRet-MLLM model
46
  - [ ] MegaPairs Dataset
47
  - [ ] Evaluation code
48
  - [ ] Fine-tuning code
49
 
50
 
51
  ## Introduction
52
- In this project, we introduce **MegaPairs**, a novel data synthesis method that leverages open-domain images to create *heterogeneous KNN triplets* for universal multimodal retrieval. Our MegaPairs dataset contains over 26 million triplets, and we have trained a series of multimodal retrieval models, **MMRets**, including MMRet-CLIP (base and large) and MMRet-MLLM.
53
 
54
- MMRets achieve state-of-the-art performance on four popular zero-shot composed image retrieval benchmarks and the massive multimodal embedding benchmark (MMEB). Extensive experiments demonstrate the ***efficiency, scalability, and generalization*** features of MegaPairs. Please refer to our [paper](https://arxiv.org/abs/2412.14475) for more details.
55
 
56
  ## Model Usage
57
 
58
- ### 1. MMRet-CLIP Models
59
- You can easily use MMRet-CLIP models based on ```transformers```
60
  ```python
61
  import torch
62
  from transformers import AutoModel
63
 
64
- MODEL_NAME = "JUNJIE99/MMRet-base" # or "JUNJIE99/MMRet-large"
65
 
66
  model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
67
  model.set_processor(MODEL_NAME)
@@ -81,39 +87,76 @@ with torch.no_grad():
81
  print(scores)
82
  ```
83
 
 
 
 
 
 
84
 
 
 
 
 
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
- ### 2. MMRet-MLLM Models
88
- ```Will be released soon.```
89
 
90
  ## Model Performance
91
  ### Zero-Shot Composed Image Retrieval
92
 
93
- MMRet sets a new performance benchmark in zero-shot composed image retrieval tasks. On the CIRCO benchmark, our MMRet-base model, with only 149 million parameters, surpasses all previous models, including those with 50 times more parameters. Additionally, MMRet-MLLM achieves an 8.1% improvement over the previous state-of-the-art model.
94
 
95
  <img src="./assets/res-zs-cir.png" width="800">
96
 
97
  ### Zero-Shot Performance on MMEB
98
 
99
- MMRet-MLLM achieves state-of-the-art zero-shot performance on the Massive Multimodal Embedding Benchmark (MMEB), despite being trained only on the ImageText-to-Image paradigm. This demonstrates the excellent generalization capability of MegaPairs for multimodal embedding.
100
 
101
  <img src="./assets/res-zs-mmeb.png" width="800">
102
 
103
  ### Fine-Tuning Performance on MMEB
104
 
105
- After fine-tuning on downstream tasks, MMRet-MLLM maintains its leading performance. Notably, it surpasses the previous state-of-the-art by 7.1% on the MMEB out-of-distribution (OOD) set. These results demonstrate the robust generalization capability of MMRet-MLLM and highlight the potential of MegaPairs as foundational training data for universal multimodal embedding.
106
 
107
  <img src="./assets/res-ft-mmeb.png" width="800">
108
 
109
  ### Performance Scaling
110
- MegaPairs showcases **scalability**: MMRet-base improves as training data increases. It also demonstrates **efficiency**: with just 0.5M training samples, MMRet-base significantly outperforms MagicLens, which uses the same CLIP-base backbone and was trained on 36.7M samples.
111
 
112
  <img src="./assets/res-scaling.png" width="800">
113
 
114
 
115
  ## License
116
- The annotations for MegaPairs and the MMRet models are released under the [MIT License](LICENSE). The images in MegaPairs originate from the [Recap-Datacomp](https://huggingface.co/datasets/UCSC-VLAA/Recap-DataComp-1B), which is released under the CC BY 4.0 license.
117
 
118
 
119
 
@@ -127,4 +170,4 @@ If you find this repository useful, please consider giving a star ⭐ and citati
127
  journal={arXiv preprint arXiv:2412.14475},
128
  year={2024}
129
  }
130
- ```
 
8
  - multimodal-retrieval
9
  - embedding-model
10
  ---
11
+
12
  <h1 align="center">MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval</h1>
13
 
14
  <p align="center">
15
  <a href="https://arxiv.org/abs/2412.14475">
16
+ <img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2412.14475-B31B1B.svg">
17
  </a>
18
  <a href="https://github.com/VectorSpaceLab/MegaPairs">
19
  <img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
20
  </a>
21
+ <a href="https://huggingface.co/datasets/BAAI/MegaPairs">
22
  <img alt="Build" src="https://img.shields.io/badge/πŸ€— Datasets-MegaPairs-yellow">
23
  </p>
24
 
25
  <p align="center">
26
  </a>
27
+ <a href="https://huggingface.co/BAAI/BGE-VL-base">
28
+ <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-BGE_VL_base-yellow">
29
+ </a>
30
+ <a href="https://huggingface.co/BAAI/BGE-VL-large">
31
+ <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-BGE_VL_large-yellow">
32
  </a>
33
+ <a href="https://huggingface.co/BAAI/BGE-VL-MLLM-S1">
34
+ <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-BGE_VL_MLLM_S1-yellow">
35
  </a>
36
+ <a href="https://huggingface.co/BAAI/BGE-VL-MLLM-S2">
37
+ <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-BGE_VL_MLLM_S2-yellow">
38
  </a>
39
  </p>
40
 
41
  ## News
42
+ ```2024-3-4``` πŸš€πŸš€ We have released the BGE-VL-MLLM models on Huggingface: [BGE-VL-MLLM-S1](https://huggingface.co/BAAI/BGE-VL-MLLM-S1) and [BGE-VL-MLLM-S2](https://huggingface.co/BAAI/BGE-VL-MLLM-S2). **BGE-VL-MLLM-S1** is trained exclusively on our MegaPairs dataset, achieving outstanding performance in composed image retrieval, with an 8.1% improvement on the CIRCO benchmark (mAP@5) over the previous state-of-the-art. **BGE-VL-MLLM-S2** builds on BGE-VL-MLLM-S1 with an additional epoch of fine-tuning on the MMEB benchmark training set, delivering enhanced performance across a broader range of multimodal embedding tasks.
43
+
44
+ ```2024-12-27``` πŸš€πŸš€ BGE-VL-CLIP models are released on Huggingface: [BGE-VL-base](https://huggingface.co/BAAI/BGE-VL-base) and [BGE-VL-large](https://huggingface.co/BAAI/BGE-VL-large).
45
 
46
  ```2024-12-19``` πŸŽ‰πŸŽ‰ Release our paper: [MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval](https://arxiv.org/pdf/2412.14475).
47
 
48
  ## Release Plan
49
  - [x] Paper
50
+ - [x] BGE-VL-base and BGE-VL-large models
51
+ - [x] BGE-VL-MLLM model
52
  - [ ] MegaPairs Dataset
53
  - [ ] Evaluation code
54
  - [ ] Fine-tuning code
55
 
56
 
57
  ## Introduction
58
+ In this work, we introduce **MegaPairs**, a novel data synthesis method that leverages open-domain images to create *heterogeneous KNN triplets* for universal multimodal retrieval. Our MegaPairs dataset contains over 26 million triplets, and we have trained a series of multimodal retrieval models, **BGE-VL**, including BGE-VL-CLIP (base and large) and BGE-VL-MLLM.
59
 
60
+ BGE-VL achieve state-of-the-art performance on four popular zero-shot composed image retrieval benchmarks and the massive multimodal embedding benchmark (MMEB). Extensive experiments demonstrate the ***efficiency, scalability, and generalization*** features of MegaPairs. Please refer to our [paper](https://arxiv.org/abs/2412.14475) for more details.
61
 
62
  ## Model Usage
63
 
64
+ ### 1. BGE-VL-CLIP Models
65
+ You can easily use BGE-VL-CLIP models based on ```transformers```
66
  ```python
67
  import torch
68
  from transformers import AutoModel
69
 
70
+ MODEL_NAME = "BAAI/BGE-VL-base" # or "BAAI/BGE-VL-large"
71
 
72
  model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True) # You must set trust_remote_code=True
73
  model.set_processor(MODEL_NAME)
 
87
  print(scores)
88
  ```
89
 
90
+ See the [demo](./retrieval_demo.ipynb) for a complete example of using BGE-VL for multimodel retrieval.
91
+
92
+
93
+ ### 2. BGE-VL-MLLM Models
94
+
95
 
96
+ ```python
97
+ import torch
98
+ from transformers import AutoModel
99
+ from PIL import Image
100
 
101
+ MODEL_NAME= "BAAI/BGE-VL-MLLM-S1"
102
+
103
+ model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
104
+ model.eval()
105
+ model.cuda()
106
+
107
+ with torch.no_grad():
108
+ model.set_processor(MODEL_NAME)
109
+
110
+ query_inputs = model.data_process(
111
+ text="Make the background dark, as if the camera has taken the photo at night",
112
+ images="./assets/cir_query.png",
113
+ q_or_c="q",
114
+ task_instruction="Retrieve the target image that best meets the combined criteria by using both the provided image and the image retrieval instructions: "
115
+ )
116
+
117
+ candidate_inputs = model.data_process(
118
+ images=["./assets/cir_candi_1.png", "./assets/cir_candi_2.png"],
119
+ q_or_c="c",
120
+ )
121
+
122
+ query_embs = model(**query_inputs, output_hidden_states=True)[:, -1, :]
123
+ candi_embs = model(**candidate_inputs, output_hidden_states=True)[:, -1, :]
124
+
125
+ query_embs = torch.nn.functional.normalize(query_embs, dim=-1)
126
+ candi_embs = torch.nn.functional.normalize(candi_embs, dim=-1)
127
+
128
+ scores = torch.matmul(query_embs, candi_embs.T)
129
+ print(scores)
130
+ ```
131
 
 
 
132
 
133
  ## Model Performance
134
  ### Zero-Shot Composed Image Retrieval
135
 
136
+ BGE-VL sets a new performance benchmark in zero-shot composed image retrieval tasks. On the CIRCO benchmark, our BGE-VL-base model, with only 149 million parameters, surpasses all previous models, including those with 50 times more parameters. Additionally, BGE-VL-MLLM achieves an 8.1% improvement over the previous state-of-the-art model.
137
 
138
  <img src="./assets/res-zs-cir.png" width="800">
139
 
140
  ### Zero-Shot Performance on MMEB
141
 
142
+ BGE-VL-MLLM achieves state-of-the-art zero-shot performance on the Massive Multimodal Embedding Benchmark (MMEB), despite being trained only on the ImageText-to-Image paradigm. This demonstrates the excellent generalization capability of MegaPairs for multimodal embedding.
143
 
144
  <img src="./assets/res-zs-mmeb.png" width="800">
145
 
146
  ### Fine-Tuning Performance on MMEB
147
 
148
+ After fine-tuning on downstream tasks, BGE-VL-MLLM maintains its leading performance. Notably, it surpasses the previous state-of-the-art by 7.1% on the MMEB out-of-distribution (OOD) set. These results demonstrate the robust generalization capability of BGE-VL-MLLM and highlight the potential of MegaPairs as foundational training data for universal multimodal embedding.
149
 
150
  <img src="./assets/res-ft-mmeb.png" width="800">
151
 
152
  ### Performance Scaling
153
+ MegaPairs showcases **scalability**: BGE-VL-base improves as training data increases. It also demonstrates **efficiency**: with just 0.5M training samples, BGE-VL-base significantly outperforms MagicLens, which uses the same CLIP-base backbone and was trained on 36.7M samples.
154
 
155
  <img src="./assets/res-scaling.png" width="800">
156
 
157
 
158
  ## License
159
+ The annotations for MegaPairs and the BGE-VL models are released under the [MIT License](LICENSE). The images in MegaPairs originate from the [Recap-Datacomp](https://huggingface.co/datasets/UCSC-VLAA/Recap-DataComp-1B), which is released under the CC BY 4.0 license.
160
 
161
 
162
 
 
170
  journal={arXiv preprint arXiv:2412.14475},
171
  year={2024}
172
  }
173
+ ```