|
--- |
|
language: |
|
- en |
|
--- |
|
|
|
|
|
# Emu2-Gen |
|
|
|
[Paper](https://arxiv.org/abs/2312.13286) | [🤗HF Demo](https://huggingface.co/spaces/BAAI/Emu2) | [Demo](https://emu.ssi.plus) | [Project Page](https://baaivision.github.io/emu2/) | [Github](https://github.com/baaivision/Emu) |
|
|
|
|
|
## Model Weights |
|
|
|
| Model name | Weight | |
|
| ------------------ | ------------------------------------------------------- | |
|
| **Emu2** | [🤗 HF link](https://huggingface.co/BAAI/Emu2) | |
|
| **Emu2-Chat** | [🤗 HF link](https://huggingface.co/BAAI/Emu2-Chat) | |
|
| **Emu2-Gen** | [🤗 HF link](https://huggingface.co/BAAI/Emu2-Gen) | |
|
|
|
|
|
## Inference (Huggingface Version) |
|
|
|
### Emu2-Gen |
|
|
|
```python |
|
import cv2 |
|
from diffusers import DiffusionPipeline |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
# For the first time of using, |
|
# you need to download the huggingface repo "BAAI/Emu2-GEN" to local first |
|
path = "path to local BAAI/Emu2-GEN" |
|
|
|
multimodal_encoder = AutoModelForCausalLM.from_pretrained( |
|
f"{path}/multimodal_encoder", |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
use_safetensors=True, |
|
variant="bf16" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(f"{path}/tokenizer") |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
path, |
|
custom_pipeline="pipeline_emu2_gen", |
|
torch_dtype=torch.bfloat16, |
|
use_safetensors=True, |
|
variant="bf16", |
|
multimodal_encoder=multimodal_encoder, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
# For the non-first time of using, you can init the pipeline directly |
|
pipe = DiffusionPipeline.from_pretrained( |
|
path, |
|
custom_pipeline="pipeline_emu2_gen", |
|
torch_dtype=torch.bfloat16, |
|
use_safetensors=True, |
|
variant="bf16", |
|
) |
|
|
|
pipe.to("cuda") |
|
|
|
# text-to-image |
|
prompt = "impressionist painting of an astronaut in a jungle" |
|
ret = pipe(prompt) |
|
ret.images[0].save("astronaut.png") |
|
|
|
# image editing |
|
image = Image.open(requests.get('https://github.com/baaivision/Emu/Emu2/examples/dog2.jpg?raw=true',stream=True).raw).convert('RGB') |
|
prompt = [image, "wearing a red hat on the beach."] |
|
ret = pipe(prompt) |
|
ret.images[0].save("dog_hat_beach.png") |
|
|
|
# grounding generation |
|
def draw_box(left, top, right, bottom): |
|
mask = np.zeros((448, 448, 3), dtype=np.uint8) |
|
mask = cv2.rectangle(mask, (left, top), (right, bottom), (255, 255, 255), 3) |
|
mask = Image.fromarray(mask) |
|
return mask |
|
|
|
dog1 = Image.open(requests.get('https://github.com/baaivision/Emu/Emu2/examples/dog1.jpg?raw=true',stream=True).raw).convert('RGB') |
|
dog2 = Image.open(requests.get('https://github.com/baaivision/Emu/Emu2/examples/dog2.jpg?raw=true',stream=True).raw).convert('RGB') |
|
dog3 = Image.open(requests.get('https://github.com/baaivision/Emu/Emu2/examples/dog3.jpg?raw=true',stream=True).raw).convert('RGB') |
|
dog1_mask = draw_box( 22, 14, 224, 224) |
|
dog2_mask = draw_box(224, 10, 448, 224) |
|
dog3_mask = draw_box(120, 264, 320, 438) |
|
|
|
prompt = [ |
|
"<grounding>", |
|
"A photo of", |
|
"<phrase>the first dog</phrase>" |
|
"<object>", |
|
dog1_mask, |
|
"</object>", |
|
dog1, |
|
"<phrase>the second dog</phrase>" |
|
"<object>", |
|
dog2_mask, |
|
"</object>", |
|
dog2, |
|
"<phrase>the third dog</phrase>" |
|
"<object>", |
|
dog3_mask, |
|
"</object>", |
|
dog3, |
|
"on the grass", |
|
] |
|
ret = pipe(prompt) |
|
ret.images[0].save("three_dogs.png") |
|
``` |
|
|
|
## Citation |
|
|
|
If you find Emu2 useful for your research and applications, please consider starring this repository and citing: |
|
|
|
``` |
|
@article{Emu2, |
|
title={Generative Multimodal Models are In-Context Learners}, |
|
author={Quan Sun and Yufeng Cui and Xiaosong Zhang and Fan Zhang and Qiying Yu and Zhengxiong Luo and Yueze Wang and Yongming Rao and Jingjing Liu and Tiejun Huang and Xinlong Wang}, |
|
publisher={arXiv preprint arXiv:2312.13286}, |
|
year={2023}, |
|
} |
|
``` |