BAAI
/

YufengCui commited on
Commit
387860f
·
verified ·
1 Parent(s): 705a7b5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -3,6 +3,39 @@ license: apache-2.0
3
  library_name: transformers
4
  ---
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  #### Quickstart
7
 
8
  ```python
 
3
  library_name: transformers
4
  ---
5
 
6
+ <div align='center'>
7
+ <h1>Emu3: Next-Token Prediction is All You Need</h1h1>
8
+ <h3></h3>
9
+
10
+ [Emu3 Team, BAAI](https://www.baai.ac.cn/english.html)
11
+
12
+ | [Project Page](https://emu.baai.ac.cn) | [Paper](https://baai-solution.ks3-cn-beijing.ksyuncs.com/emu3/Emu3-tech-report.pdf?KSSAccessKeyId=AKLTgew6Kdg6RsK92QSfB2KLA&Expires=2591406552&Signature=6BvwfLVqvfww26Bhwvk3mG0FrL8%3D) | [🤗HF Models](https://huggingface.co/collections/BAAI/emu3-66f4e64f70850ff358a2e60f) | [github](https://github.com/baaivision/Emu3)
13
+ |
14
+
15
+
16
+ </div>
17
+
18
+ <div align='center'>
19
+ <img src="https://github.com/baaivision/Emu3/blob/main/assets/arch.png?raw=True" class="interpolation-image" alt="arch." height="80%" width="70%" />
20
+ </div>
21
+
22
+ We introduce **Emu3**, a new suite of state-of-the-art multimodal models trained solely with **<i>next-token prediction</i>**! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences.
23
+
24
+ ### Emu3 excels in both generation and perception
25
+ **Emu3** outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures.
26
+
27
+ <div align='center'>
28
+ <img src="https://github.com/baaivision/Emu3/blob/main/assets/comparison.png?raw=True" class="interpolation-image" alt="comparison." height="80%" width="80%" />
29
+ </div>
30
+
31
+ ### Highlights
32
+
33
+ - **Emu3** is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles.
34
+ - **Emu3** shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM.
35
+ - **Emu3** simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next.
36
+
37
+
38
+
39
  #### Quickstart
40
 
41
  ```python