# coding=utf-8 # Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Emu3 model configuration""" from typing import Optional from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) EMU3_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class Emu3Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate an Emu3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Emu3-8B. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 184622): Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Emu3Model`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 9216): The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens, initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, 151643): Padding token id. bos_token_id (`int`, *optional*, defaults to 151849): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 151850): End of stream token id. img_token_id (`int`, *optional*, defaults to 151851): image token id. boi_token_id (`int`, *optional*, defaults to 151852): Beginning of image token id. eoi_token_id (`int`, *optional*, defaults to 151853): End of image token id. eol_token_id (`int`, *optional*, defaults to 151846): End of line token id. eof_token_id (`int`, *optional*, defaults to 151847): End of line token id. image_area (`int`, *optional*, defaults to 720 * 720) generated image area (image area used in training) pretraining_tp (`int`, *optional*, defaults to 1): Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 1_000_000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. ```python >>> from transformers import Emu3Model, Emu3Config >>> # Initializing a Emu3-8b style configuration >>> configuration = Emu3Config() >>> # Initializing a model from the Emu3-8b style configuration >>> model = Emu3Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "Emu3" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size: int = 184622, hidden_size: int = 4096, intermediate_size: int = 14336, num_hidden_layers: int = 32, num_attention_heads: int = 32, num_key_value_heads: Optional[int] = 8, hidden_act: str = "silu", max_position_embeddings: int = 9216, initializer_range: float = 0.02, rms_norm_eps: float = 1e-5, use_cache: bool = True, pad_token_id: int = 151643, bos_token_id: int = 151849, eos_token_id: int = 151850, img_token_id: int = 151851, boi_token_id: int = 151852, eoi_token_id: int = 151853, eol_token_id: int = 151846, eof_token_id: int = 151847, image_area: int = 720 * 720, pretraining_tp: int = 1, tie_word_embeddings: bool = False, rope_theta: float = 1000000.0, rope_scaling: Optional = None, attention_dropout: float = 0.1, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self._rope_scaling_validation() self.attention_dropout = attention_dropout self.img_token_id = img_token_id self.boi_token_id = boi_token_id self.eoi_token_id = eoi_token_id self.eol_token_id = eol_token_id self.eof_token_id = eof_token_id self.image_area = image_area super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")