File size: 68,135 Bytes
6a63eab 4c96e39 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab 436e826 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab f222971 6a63eab a45d34f 6a63eab ad25bdb a45d34f 6a63eab a45d34f 6a63eab a45d34f f5bf5e8 a45d34f 6a63eab f5bf5e8 6a63eab f5bf5e8 7b387a4 f5bf5e8 6a63eab a45d34f 6a63eab 8ce799c 6a63eab a45d34f 6a63eab a45d34f 6a63eab a45d34f 6a63eab 5a48fd9 6a63eab 5a48fd9 cceec8c 5a48fd9 6a63eab c7dd97a 6a63eab 5a48fd9 6a63eab 5a48fd9 6a63eab 8ce799c 6a63eab 5a48fd9 6a63eab 5a48fd9 6a63eab 5a48fd9 6a63eab 364a023 6a63eab 61ef075 6a63eab 82c65a1 6a63eab 61ef075 6a63eab 82c65a1 6a63eab 61ef075 6a63eab 4c96e39 6a63eab 4c96e39 6a63eab a45d34f bd0b867 a45d34f 6a63eab f5bf5e8 6a63eab a45d34f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 |
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
license: apache-2.0
model-index:
- name: bge-en-icl
results:
- dataset:
config: en
name: MTEB AmazonCounterfactualClassification (en)
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 93.1492537313433
- type: ap
value: 72.56132559564212
- type: f1
value: 89.71796898040243
- type: main_score
value: 93.1492537313433
task:
type: Classification
- dataset:
config: default
name: MTEB AmazonPolarityClassification
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
split: test
type: mteb/amazon_polarity
metrics:
- type: accuracy
value: 96.98372499999999
- type: ap
value: 95.62303091773919
- type: f1
value: 96.98308191715637
- type: main_score
value: 96.98372499999999
task:
type: Classification
- dataset:
config: en
name: MTEB AmazonReviewsClassification (en)
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 61.461999999999996
- type: f1
value: 60.57257766583118
- type: main_score
value: 61.461999999999996
task:
type: Classification
- dataset:
config: default
name: MTEB ArguAna
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
split: test
type: mteb/arguana
metrics:
- type: main_score
value: 83.07967801208441
- type: ndcg_at_1
value: 66.50071123755335
- type: ndcg_at_3
value: 80.10869593172173
- type: ndcg_at_5
value: 81.89670542467924
- type: ndcg_at_10
value: 83.07967801208441
- type: ndcg_at_100
value: 83.5991349601075
- type: ndcg_at_1000
value: 83.5991349601075
- type: map_at_1
value: 66.50071123755335
- type: map_at_3
value: 76.83736367946898
- type: map_at_5
value: 77.8473210052158
- type: map_at_10
value: 78.35472690735851
- type: map_at_100
value: 78.47388207611678
- type: map_at_1000
value: 78.47388207611678
- type: precision_at_1
value: 66.50071123755335
- type: precision_at_3
value: 29.848269321953076
- type: precision_at_5
value: 18.762446657183045
- type: precision_at_10
value: 9.736842105262909
- type: precision_at_100
value: 0.9964438122332677
- type: precision_at_1000
value: 0.09964438122332549
- type: recall_at_1
value: 66.50071123755335
- type: recall_at_3
value: 89.5448079658606
- type: recall_at_5
value: 93.8122332859175
- type: recall_at_10
value: 97.36842105263158
- type: recall_at_100
value: 99.6443812233286
- type: recall_at_1000
value: 99.6443812233286
task:
type: Retrieval
- dataset:
config: default
name: MTEB ArxivClusteringP2P
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
split: test
type: mteb/arxiv-clustering-p2p
metrics:
- type: main_score
value: 54.43859683357485
- type: v_measure
value: 54.43859683357485
- type: v_measure_std
value: 14.511128158596337
task:
type: Clustering
- dataset:
config: default
name: MTEB ArxivClusteringS2S
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
split: test
type: mteb/arxiv-clustering-s2s
metrics:
- type: main_score
value: 49.33365996236564
- type: v_measure
value: 49.33365996236564
- type: v_measure_std
value: 14.61261944856548
task:
type: Clustering
- dataset:
config: default
name: MTEB AskUbuntuDupQuestions
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
split: test
type: mteb/askubuntudupquestions-reranking
metrics:
- type: main_score
value: 65.15263966490278
- type: map
value: 65.15263966490278
- type: mrr
value: 77.90331090885107
task:
type: Reranking
- dataset:
config: default
name: MTEB BIOSSES
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
split: test
type: mteb/biosses-sts
metrics:
- type: main_score
value: 86.47365710792691
- type: cosine_spearman
value: 86.47365710792691
- type: spearman
value: 86.47365710792691
task:
type: STS
- dataset:
config: default
name: MTEB Banking77Classification
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
split: test
type: mteb/banking77
metrics:
- type: accuracy
value: 91.48701298701299
- type: f1
value: 91.4733869423637
- type: main_score
value: 91.48701298701299
task:
type: Classification
- dataset:
config: default
name: MTEB BiorxivClusteringP2P
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
split: test
type: mteb/biorxiv-clustering-p2p
metrics:
- type: main_score
value: 53.050461108038036
- type: v_measure
value: 53.050461108038036
- type: v_measure_std
value: 0.9436104839012786
task:
type: Clustering
- dataset:
config: default
name: MTEB BiorxivClusteringS2S
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
split: test
type: mteb/biorxiv-clustering-s2s
metrics:
- type: main_score
value: 48.38215568371151
- type: v_measure
value: 48.38215568371151
- type: v_measure_std
value: 0.9104384504649026
task:
type: Clustering
- dataset:
config: default
name: MTEB CQADupstackRetrieval
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
split: test
type: mteb/cqadupstack
metrics:
- type: main_score
value: 47.308084499970704
- type: ndcg_at_1
value: 36.038578730542476
- type: ndcg_at_3
value: 41.931365356453036
- type: ndcg_at_5
value: 44.479015523894994
- type: ndcg_at_10
value: 47.308084499970704
- type: ndcg_at_100
value: 52.498062430513606
- type: ndcg_at_1000
value: 54.2908789514719
- type: map_at_1
value: 30.38821701528966
- type: map_at_3
value: 37.974871761903636
- type: map_at_5
value: 39.85399878507757
- type: map_at_10
value: 41.31456611036795
- type: map_at_100
value: 42.62907836655835
- type: map_at_1000
value: 42.737235870659845
- type: precision_at_1
value: 36.038578730542476
- type: precision_at_3
value: 19.39960180094633
- type: precision_at_5
value: 13.79264655952497
- type: precision_at_10
value: 8.399223517333388
- type: precision_at_100
value: 1.2992373779520896
- type: precision_at_1000
value: 0.16327170951909567
- type: recall_at_1
value: 30.38821701528966
- type: recall_at_3
value: 45.51645512564165
- type: recall_at_5
value: 52.06077167834868
- type: recall_at_10
value: 60.38864106788279
- type: recall_at_100
value: 82.76968509918343
- type: recall_at_1000
value: 94.84170217080344
task:
type: Retrieval
- dataset:
config: default
name: MTEB ClimateFEVER
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
split: test
type: mteb/climate-fever
metrics:
- type: main_score
value: 45.4272998284769
- type: ndcg_at_1
value: 44.36482084690554
- type: ndcg_at_3
value: 38.13005747178844
- type: ndcg_at_5
value: 40.83474510717123
- type: ndcg_at_10
value: 45.4272998284769
- type: ndcg_at_100
value: 52.880220707479516
- type: ndcg_at_1000
value: 55.364753427333
- type: map_at_1
value: 19.200868621064064
- type: map_at_3
value: 28.33785740137525
- type: map_at_5
value: 31.67162504524064
- type: map_at_10
value: 34.417673164090075
- type: map_at_100
value: 36.744753097028976
- type: map_at_1000
value: 36.91262189016135
- type: precision_at_1
value: 44.36482084690554
- type: precision_at_3
value: 29.14223669923975
- type: precision_at_5
value: 22.410423452768388
- type: precision_at_10
value: 14.293159609120309
- type: precision_at_100
value: 2.248859934853431
- type: precision_at_1000
value: 0.2722475570032542
- type: recall_at_1
value: 19.200868621064064
- type: recall_at_3
value: 34.132464712269176
- type: recall_at_5
value: 42.35613463626491
- type: recall_at_10
value: 52.50814332247546
- type: recall_at_100
value: 77.16178067318128
- type: recall_at_1000
value: 90.59174809989138
task:
type: Retrieval
- dataset:
config: default
name: MTEB DBPedia
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
split: test
type: mteb/dbpedia
metrics:
- type: main_score
value: 51.634197691802754
- type: ndcg_at_1
value: 64.375
- type: ndcg_at_3
value: 55.677549598242614
- type: ndcg_at_5
value: 53.44347199908503
- type: ndcg_at_10
value: 51.634197691802754
- type: ndcg_at_100
value: 56.202861267183415
- type: ndcg_at_1000
value: 63.146019108272576
- type: map_at_1
value: 9.789380503780919
- type: map_at_3
value: 16.146582195277016
- type: map_at_5
value: 19.469695222167193
- type: map_at_10
value: 24.163327344766145
- type: map_at_100
value: 35.47047690245571
- type: map_at_1000
value: 37.5147432331838
- type: precision_at_1
value: 76.25
- type: precision_at_3
value: 59.08333333333333
- type: precision_at_5
value: 52.24999999999997
- type: precision_at_10
value: 42.54999999999994
- type: precision_at_100
value: 13.460000000000008
- type: precision_at_1000
value: 2.4804999999999966
- type: recall_at_1
value: 9.789380503780919
- type: recall_at_3
value: 17.48487134027656
- type: recall_at_5
value: 22.312024269698806
- type: recall_at_10
value: 30.305380335237324
- type: recall_at_100
value: 62.172868946596424
- type: recall_at_1000
value: 85.32410301328747
task:
type: Retrieval
- dataset:
config: default
name: MTEB EmotionClassification
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
split: test
type: mteb/emotion
metrics:
- type: accuracy
value: 93.36
- type: f1
value: 89.73665936982262
- type: main_score
value: 93.36
task:
type: Classification
- dataset:
config: default
name: MTEB FEVER
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
split: test
type: mteb/fever
metrics:
- type: main_score
value: 92.82809814626805
- type: ndcg_at_1
value: 88.98889888988899
- type: ndcg_at_3
value: 91.82404417747676
- type: ndcg_at_5
value: 92.41785792357787
- type: ndcg_at_10
value: 92.82809814626805
- type: ndcg_at_100
value: 93.31730867509245
- type: ndcg_at_1000
value: 93.45171203408582
- type: map_at_1
value: 82.64125817343636
- type: map_at_3
value: 89.39970782792554
- type: map_at_5
value: 89.96799501378695
- type: map_at_10
value: 90.27479706587437
- type: map_at_100
value: 90.45185655778057
- type: map_at_1000
value: 90.46130471574544
- type: precision_at_1
value: 88.98889888988899
- type: precision_at_3
value: 34.923492349234245
- type: precision_at_5
value: 21.524152415244043
- type: precision_at_10
value: 11.033603360337315
- type: precision_at_100
value: 1.1521152115211895
- type: precision_at_1000
value: 0.11765676567657675
- type: recall_at_1
value: 82.64125817343636
- type: recall_at_3
value: 94.35195900542428
- type: recall_at_5
value: 95.9071323799047
- type: recall_at_10
value: 97.04234113887586
- type: recall_at_100
value: 98.77282371094255
- type: recall_at_1000
value: 99.5555567461508
task:
type: Retrieval
- dataset:
config: default
name: MTEB FiQA2018
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
split: test
type: mteb/fiqa
metrics:
- type: main_score
value: 59.67151242793314
- type: ndcg_at_1
value: 57.407407407407405
- type: ndcg_at_3
value: 53.79975378289304
- type: ndcg_at_5
value: 56.453379423655406
- type: ndcg_at_10
value: 59.67151242793314
- type: ndcg_at_100
value: 65.34055762539253
- type: ndcg_at_1000
value: 67.07707746043032
- type: map_at_1
value: 30.65887045053714
- type: map_at_3
value: 44.09107110881799
- type: map_at_5
value: 48.18573748068346
- type: map_at_10
value: 51.03680979612876
- type: map_at_100
value: 53.03165194566928
- type: map_at_1000
value: 53.16191096190861
- type: precision_at_1
value: 57.407407407407405
- type: precision_at_3
value: 35.493827160493886
- type: precision_at_5
value: 26.913580246913547
- type: precision_at_10
value: 16.435185185185155
- type: precision_at_100
value: 2.2685185185184986
- type: precision_at_1000
value: 0.25864197530863964
- type: recall_at_1
value: 30.65887045053714
- type: recall_at_3
value: 48.936723427464194
- type: recall_at_5
value: 58.55942925387371
- type: recall_at_10
value: 68.45128551147073
- type: recall_at_100
value: 88.24599311867836
- type: recall_at_1000
value: 98.18121693121691
task:
type: Retrieval
- dataset:
config: default
name: MTEB HotpotQA
revision: ab518f4d6fcca38d87c25209f94beba119d02014
split: test
type: mteb/hotpotqa
metrics:
- type: main_score
value: 85.13780800141961
- type: ndcg_at_1
value: 89.9392302498312
- type: ndcg_at_3
value: 81.2061569376288
- type: ndcg_at_5
value: 83.53311592078133
- type: ndcg_at_10
value: 85.13780800141961
- type: ndcg_at_100
value: 87.02630661625386
- type: ndcg_at_1000
value: 87.47294723601075
- type: map_at_1
value: 44.9696151249156
- type: map_at_3
value: 76.46972766148966
- type: map_at_5
value: 78.47749268512187
- type: map_at_10
value: 79.49792611170005
- type: map_at_100
value: 80.09409086274644
- type: map_at_1000
value: 80.11950878917663
- type: precision_at_1
value: 89.9392302498312
- type: precision_at_3
value: 53.261309925724234
- type: precision_at_5
value: 33.79338284942924
- type: precision_at_10
value: 17.69750168805041
- type: precision_at_100
value: 1.9141120864280805
- type: precision_at_1000
value: 0.19721809588118133
- type: recall_at_1
value: 44.9696151249156
- type: recall_at_3
value: 79.8919648885888
- type: recall_at_5
value: 84.48345712356516
- type: recall_at_10
value: 88.48750844024308
- type: recall_at_100
value: 95.70560432140446
- type: recall_at_1000
value: 98.60904794058068
task:
type: Retrieval
- dataset:
config: default
name: MTEB ImdbClassification
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
split: test
type: mteb/imdb
metrics:
- type: accuracy
value: 96.9144
- type: ap
value: 95.45276911068486
- type: f1
value: 96.91412729455966
- type: main_score
value: 96.9144
task:
type: Classification
- dataset:
config: default
name: MTEB MSMARCO
revision: c5a29a104738b98a9e76336939199e264163d4a0
split: dev
type: mteb/msmarco
metrics:
- type: main_score
value: 46.78865753107054
- type: ndcg_at_1
value: 26.63323782234957
- type: ndcg_at_3
value: 38.497585804985754
- type: ndcg_at_5
value: 42.72761631631636
- type: ndcg_at_10
value: 46.78865753107054
- type: ndcg_at_100
value: 51.96170786623209
- type: ndcg_at_1000
value: 52.82713901970963
- type: map_at_1
value: 25.89063992359121
- type: map_at_3
value: 35.299466730340654
- type: map_at_5
value: 37.68771887933786
- type: map_at_10
value: 39.40908074468253
- type: map_at_100
value: 40.53444082323405
- type: map_at_1000
value: 40.57183037649452
- type: precision_at_1
value: 26.63323782234957
- type: precision_at_3
value: 16.265520534861793
- type: precision_at_5
value: 11.902578796562304
- type: precision_at_10
value: 7.262177650430416
- type: precision_at_100
value: 0.9819484240687512
- type: precision_at_1000
value: 0.10571633237823287
- type: recall_at_1
value: 25.89063992359121
- type: recall_at_3
value: 46.99737344794652
- type: recall_at_5
value: 57.160936007640906
- type: recall_at_10
value: 69.43409742120343
- type: recall_at_100
value: 92.86413562559697
- type: recall_at_1000
value: 99.3230659025788
task:
type: Retrieval
- dataset:
config: en
name: MTEB MTOPDomainClassification (en)
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 98.42225262197901
- type: f1
value: 98.31652547061115
- type: main_score
value: 98.42225262197901
task:
type: Classification
- dataset:
config: en
name: MTEB MTOPIntentClassification (en)
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 94.00136798905609
- type: f1
value: 82.7022316533099
- type: main_score
value: 94.00136798905609
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 82.92535305985204
- type: f1
value: 79.885538231847
- type: main_score
value: 82.92535305985204
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 85.60188298587758
- type: f1
value: 84.87416963499224
- type: main_score
value: 85.60188298587758
task:
type: Classification
- dataset:
config: default
name: MTEB MedrxivClusteringP2P
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
split: test
type: mteb/medrxiv-clustering-p2p
metrics:
- type: main_score
value: 45.86171497327639
- type: v_measure
value: 45.86171497327639
- type: v_measure_std
value: 1.551347259003324
task:
type: Clustering
- dataset:
config: default
name: MTEB MedrxivClusteringS2S
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
split: test
type: mteb/medrxiv-clustering-s2s
metrics:
- type: main_score
value: 44.33336692345644
- type: v_measure
value: 44.33336692345644
- type: v_measure_std
value: 1.5931408596404715
task:
type: Clustering
- dataset:
config: default
name: MTEB MindSmallReranking
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
split: test
type: mteb/mind_small
metrics:
- type: main_score
value: 30.597409734750503
- type: map
value: 30.597409734750503
- type: mrr
value: 31.397041548018457
task:
type: Reranking
- dataset:
config: default
name: MTEB NFCorpus
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
split: test
type: mteb/nfcorpus
metrics:
- type: main_score
value: 41.850870119787835
- type: ndcg_at_1
value: 52.47678018575851
- type: ndcg_at_3
value: 47.43993801247414
- type: ndcg_at_5
value: 45.08173173082719
- type: ndcg_at_10
value: 41.850870119787835
- type: ndcg_at_100
value: 37.79284946590978
- type: ndcg_at_1000
value: 46.58046062123418
- type: map_at_1
value: 6.892464464226138
- type: map_at_3
value: 12.113195798233127
- type: map_at_5
value: 13.968475602788812
- type: map_at_10
value: 16.47564069781326
- type: map_at_100
value: 20.671726065190025
- type: map_at_1000
value: 22.328875914012006
- type: precision_at_1
value: 53.86996904024768
- type: precision_at_3
value: 43.96284829721363
- type: precision_at_5
value: 38.69969040247682
- type: precision_at_10
value: 30.928792569659457
- type: precision_at_100
value: 9.507739938080498
- type: precision_at_1000
value: 2.25882352941176
- type: recall_at_1
value: 6.892464464226138
- type: recall_at_3
value: 13.708153358278407
- type: recall_at_5
value: 16.651919797359145
- type: recall_at_10
value: 21.01801714352559
- type: recall_at_100
value: 37.01672102843443
- type: recall_at_1000
value: 69.8307270724072
task:
type: Retrieval
- dataset:
config: default
name: MTEB NQ
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
split: test
type: mteb/nq
metrics:
- type: main_score
value: 73.88350836507092
- type: ndcg_at_1
value: 57.0683661645423
- type: ndcg_at_3
value: 67.89935813080585
- type: ndcg_at_5
value: 71.47769719452941
- type: ndcg_at_10
value: 73.88350836507092
- type: ndcg_at_100
value: 75.76561068060907
- type: ndcg_at_1000
value: 75.92437662684215
- type: map_at_1
value: 51.00424874468904
- type: map_at_3
value: 63.87359984550011
- type: map_at_5
value: 66.23696407879494
- type: map_at_10
value: 67.42415446608673
- type: map_at_100
value: 67.92692839842621
- type: map_at_1000
value: 67.93437922640133
- type: precision_at_1
value: 57.0683661645423
- type: precision_at_3
value: 29.692931633836416
- type: precision_at_5
value: 20.046349942062854
- type: precision_at_10
value: 10.950173812283
- type: precision_at_100
value: 1.1995944380069687
- type: precision_at_1000
value: 0.12146581691772171
- type: recall_at_1
value: 51.00424874468904
- type: recall_at_3
value: 75.93665507918116
- type: recall_at_5
value: 83.95133256083433
- type: recall_at_10
value: 90.78794901506375
- type: recall_at_100
value: 98.61915797605253
- type: recall_at_1000
value: 99.7827346465817
task:
type: Retrieval
- dataset:
config: default
name: MTEB QuoraRetrieval
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
split: test
type: mteb/quora
metrics:
- type: main_score
value: 90.95410848372035
- type: ndcg_at_1
value: 84.61999999999999
- type: ndcg_at_3
value: 88.57366734033212
- type: ndcg_at_5
value: 89.89804048972175
- type: ndcg_at_10
value: 90.95410848372035
- type: ndcg_at_100
value: 91.83227134455773
- type: ndcg_at_1000
value: 91.88368412611601
- type: map_at_1
value: 73.4670089207039
- type: map_at_3
value: 84.87862925508942
- type: map_at_5
value: 86.68002324701408
- type: map_at_10
value: 87.7165466015312
- type: map_at_100
value: 88.28718809614146
- type: map_at_1000
value: 88.29877148480672
- type: precision_at_1
value: 84.61999999999999
- type: precision_at_3
value: 38.82333333333838
- type: precision_at_5
value: 25.423999999998642
- type: precision_at_10
value: 13.787999999998583
- type: precision_at_100
value: 1.5442999999999767
- type: precision_at_1000
value: 0.15672999999997972
- type: recall_at_1
value: 73.4670089207039
- type: recall_at_3
value: 89.98389854832143
- type: recall_at_5
value: 93.88541046010576
- type: recall_at_10
value: 96.99779417520634
- type: recall_at_100
value: 99.80318763957743
- type: recall_at_1000
value: 99.99638888888889
task:
type: Retrieval
- dataset:
config: default
name: MTEB RedditClustering
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
split: test
type: mteb/reddit-clustering
metrics:
- type: main_score
value: 72.33008348681277
- type: v_measure
value: 72.33008348681277
- type: v_measure_std
value: 2.9203215463933008
task:
type: Clustering
- dataset:
config: default
name: MTEB RedditClusteringP2P
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
split: test
type: mteb/reddit-clustering-p2p
metrics:
- type: main_score
value: 72.72079657828903
- type: v_measure
value: 72.72079657828903
- type: v_measure_std
value: 11.930271663428735
task:
type: Clustering
- dataset:
config: default
name: MTEB SCIDOCS
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
split: test
type: mteb/scidocs
metrics:
- type: main_score
value: 25.25865384510787
- type: ndcg_at_1
value: 28.7
- type: ndcg_at_3
value: 23.61736427940938
- type: ndcg_at_5
value: 20.845690325673885
- type: ndcg_at_10
value: 25.25865384510787
- type: ndcg_at_100
value: 36.18596641088721
- type: ndcg_at_1000
value: 41.7166868935345
- type: map_at_1
value: 5.828333333333361
- type: map_at_3
value: 10.689166666666676
- type: map_at_5
value: 13.069916666666668
- type: map_at_10
value: 15.4901164021164
- type: map_at_100
value: 18.61493245565425
- type: map_at_1000
value: 18.99943478016456
- type: precision_at_1
value: 28.7
- type: precision_at_3
value: 22.30000000000006
- type: precision_at_5
value: 18.55999999999997
- type: precision_at_10
value: 13.289999999999946
- type: precision_at_100
value: 2.905000000000005
- type: precision_at_1000
value: 0.4218999999999946
- type: recall_at_1
value: 5.828333333333361
- type: recall_at_3
value: 13.548333333333387
- type: recall_at_5
value: 18.778333333333308
- type: recall_at_10
value: 26.939999999999902
- type: recall_at_100
value: 58.91333333333344
- type: recall_at_1000
value: 85.57499999999972
task:
type: Retrieval
- dataset:
config: default
name: MTEB SICK-R
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
split: test
type: mteb/sickr-sts
metrics:
- type: main_score
value: 83.86733787791422
- type: cosine_spearman
value: 83.86733787791422
- type: spearman
value: 83.86733787791422
task:
type: STS
- dataset:
config: default
name: MTEB STS12
revision: a0d554a64d88156834ff5ae9920b964011b16384
split: test
type: mteb/sts12-sts
metrics:
- type: main_score
value: 78.14269330480724
- type: cosine_spearman
value: 78.14269330480724
- type: spearman
value: 78.14269330480724
task:
type: STS
- dataset:
config: default
name: MTEB STS13
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
split: test
type: mteb/sts13-sts
metrics:
- type: main_score
value: 86.58640009300751
- type: cosine_spearman
value: 86.58640009300751
- type: spearman
value: 86.58640009300751
task:
type: STS
- dataset:
config: default
name: MTEB STS14
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
split: test
type: mteb/sts14-sts
metrics:
- type: main_score
value: 82.8292579957437
- type: cosine_spearman
value: 82.8292579957437
- type: spearman
value: 82.8292579957437
task:
type: STS
- dataset:
config: default
name: MTEB STS15
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
split: test
type: mteb/sts15-sts
metrics:
- type: main_score
value: 87.77203714228862
- type: cosine_spearman
value: 87.77203714228862
- type: spearman
value: 87.77203714228862
task:
type: STS
- dataset:
config: default
name: MTEB STS16
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
split: test
type: mteb/sts16-sts
metrics:
- type: main_score
value: 87.0439304006969
- type: cosine_spearman
value: 87.0439304006969
- type: spearman
value: 87.0439304006969
task:
type: STS
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: main_score
value: 91.24736138013424
- type: cosine_spearman
value: 91.24736138013424
- type: spearman
value: 91.24736138013424
task:
type: STS
- dataset:
config: en
name: MTEB STS22 (en)
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: main_score
value: 70.07326214706
- type: cosine_spearman
value: 70.07326214706
- type: spearman
value: 70.07326214706
task:
type: STS
- dataset:
config: default
name: MTEB STSBenchmark
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
split: test
type: mteb/stsbenchmark-sts
metrics:
- type: main_score
value: 88.42076443255168
- type: cosine_spearman
value: 88.42076443255168
- type: spearman
value: 88.42076443255168
task:
type: STS
- dataset:
config: default
name: MTEB SciDocsRR
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
split: test
type: mteb/scidocs-reranking
metrics:
- type: main_score
value: 86.9584489124583
- type: map
value: 86.9584489124583
- type: mrr
value: 96.59475328592976
task:
type: Reranking
- dataset:
config: default
name: MTEB SciFact
revision: 0228b52cf27578f30900b9e5271d331663a030d7
split: test
type: mteb/scifact
metrics:
- type: main_score
value: 79.09159079425369
- type: ndcg_at_1
value: 66.0
- type: ndcg_at_3
value: 74.98853481223065
- type: ndcg_at_5
value: 77.29382051205019
- type: ndcg_at_10
value: 79.09159079425369
- type: ndcg_at_100
value: 80.29692802526776
- type: ndcg_at_1000
value: 80.55210036585547
- type: map_at_1
value: 62.994444444444454
- type: map_at_3
value: 71.7425925925926
- type: map_at_5
value: 73.6200925925926
- type: map_at_10
value: 74.50223544973547
- type: map_at_100
value: 74.82438594015447
- type: map_at_1000
value: 74.83420474892468
- type: precision_at_1
value: 66.0
- type: precision_at_3
value: 29.44444444444439
- type: precision_at_5
value: 19.40000000000008
- type: precision_at_10
value: 10.366666666666715
- type: precision_at_100
value: 1.0999999999999928
- type: precision_at_1000
value: 0.11200000000000007
- type: recall_at_1
value: 62.994444444444454
- type: recall_at_3
value: 80.89999999999998
- type: recall_at_5
value: 86.72777777777779
- type: recall_at_10
value: 91.88888888888887
- type: recall_at_100
value: 97.0
- type: recall_at_1000
value: 99.0
task:
type: Retrieval
- dataset:
config: default
name: MTEB SprintDuplicateQuestions
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
split: test
type: mteb/sprintduplicatequestions-pairclassification
metrics:
- type: main_score
value: 97.26819027722253
- type: cos_sim_accuracy
value: 99.88019801980198
- type: cos_sim_accuracy_threshold
value: 76.67685151100159
- type: cos_sim_ap
value: 97.23260568085786
- type: cos_sim_f1
value: 93.91824526420737
- type: cos_sim_f1_threshold
value: 75.82710981369019
- type: cos_sim_precision
value: 93.63817097415506
- type: cos_sim_recall
value: 94.19999999999999
- type: dot_accuracy
value: 99.88019801980198
- type: dot_accuracy_threshold
value: 76.67686343193054
- type: dot_ap
value: 97.23260568085786
- type: dot_f1
value: 93.91824526420737
- type: dot_f1_threshold
value: 75.8271336555481
- type: dot_precision
value: 93.63817097415506
- type: dot_recall
value: 94.19999999999999
- type: euclidean_accuracy
value: 99.88019801980198
- type: euclidean_accuracy_threshold
value: 68.29807758331299
- type: euclidean_ap
value: 97.23259982599497
- type: euclidean_f1
value: 93.91824526420737
- type: euclidean_f1_threshold
value: 69.53110694885254
- type: euclidean_precision
value: 93.63817097415506
- type: euclidean_recall
value: 94.19999999999999
- type: manhattan_accuracy
value: 99.87821782178217
- type: manhattan_accuracy_threshold
value: 3482.6908111572266
- type: manhattan_ap
value: 97.26819027722253
- type: manhattan_f1
value: 93.92592592592592
- type: manhattan_f1_threshold
value: 3555.5641174316406
- type: manhattan_precision
value: 92.78048780487805
- type: manhattan_recall
value: 95.1
- type: max_accuracy
value: 99.88019801980198
- type: max_ap
value: 97.26819027722253
- type: max_f1
value: 93.92592592592592
task:
type: PairClassification
- dataset:
config: default
name: MTEB StackExchangeClustering
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
split: test
type: mteb/stackexchange-clustering
metrics:
- type: main_score
value: 81.32419328350603
- type: v_measure
value: 81.32419328350603
- type: v_measure_std
value: 2.666861121694755
task:
type: Clustering
- dataset:
config: default
name: MTEB StackExchangeClusteringP2P
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
split: test
type: mteb/stackexchange-clustering-p2p
metrics:
- type: main_score
value: 46.048387963107565
- type: v_measure
value: 46.048387963107565
- type: v_measure_std
value: 1.4102848576321703
task:
type: Clustering
- dataset:
config: default
name: MTEB StackOverflowDupQuestions
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
split: test
type: mteb/stackoverflowdupquestions-reranking
metrics:
- type: main_score
value: 56.70574900554072
- type: map
value: 56.70574900554072
- type: mrr
value: 57.517109116373824
task:
type: Reranking
- dataset:
config: default
name: MTEB SummEval
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
split: test
type: mteb/summeval
metrics:
- type: main_score
value: 30.76932903185174
- type: cosine_spearman
value: 30.76932903185174
- type: spearman
value: 30.76932903185174
task:
type: Summarization
- dataset:
config: default
name: MTEB TRECCOVID
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
split: test
type: mteb/trec-covid
metrics:
- type: main_score
value: 79.07987651251462
- type: ndcg_at_1
value: 83.0
- type: ndcg_at_3
value: 79.86598407528447
- type: ndcg_at_5
value: 79.27684428714952
- type: ndcg_at_10
value: 79.07987651251462
- type: ndcg_at_100
value: 64.55029164391163
- type: ndcg_at_1000
value: 59.42333857860492
- type: map_at_1
value: 0.226053732680979
- type: map_at_3
value: 0.644034626013194
- type: map_at_5
value: 1.045196967937728
- type: map_at_10
value: 2.0197496659905085
- type: map_at_100
value: 13.316018005224159
- type: map_at_1000
value: 33.784766957424104
- type: precision_at_1
value: 88.0
- type: precision_at_3
value: 86.66666666666667
- type: precision_at_5
value: 85.20000000000002
- type: precision_at_10
value: 84.19999999999997
- type: precision_at_100
value: 67.88000000000001
- type: precision_at_1000
value: 26.573999999999998
- type: recall_at_1
value: 0.226053732680979
- type: recall_at_3
value: 0.6754273711472734
- type: recall_at_5
value: 1.1168649828059245
- type: recall_at_10
value: 2.2215081031265207
- type: recall_at_100
value: 16.694165236664727
- type: recall_at_1000
value: 56.7022214857503
task:
type: Retrieval
- dataset:
config: default
name: MTEB Touche2020
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
split: test
type: mteb/touche2020
metrics:
- type: main_score
value: 30.47934263207554
- type: ndcg_at_1
value: 33.6734693877551
- type: ndcg_at_3
value: 34.36843900446739
- type: ndcg_at_5
value: 32.21323786731918
- type: ndcg_at_10
value: 30.47934263207554
- type: ndcg_at_100
value: 41.49598869753928
- type: ndcg_at_1000
value: 52.32963949183662
- type: map_at_1
value: 3.0159801678718168
- type: map_at_3
value: 7.13837927642557
- type: map_at_5
value: 9.274004610363466
- type: map_at_10
value: 12.957368366814324
- type: map_at_100
value: 19.3070585127604
- type: map_at_1000
value: 20.809777161133532
- type: precision_at_1
value: 34.69387755102041
- type: precision_at_3
value: 36.054421768707485
- type: precision_at_5
value: 32.24489795918368
- type: precision_at_10
value: 27.142857142857146
- type: precision_at_100
value: 8.326530612244898
- type: precision_at_1000
value: 1.5755102040816336
- type: recall_at_1
value: 3.0159801678718168
- type: recall_at_3
value: 8.321771388428257
- type: recall_at_5
value: 11.737532394366069
- type: recall_at_10
value: 19.49315139822179
- type: recall_at_100
value: 50.937064145519685
- type: recall_at_1000
value: 83.4358283484675
task:
type: Retrieval
- dataset:
config: default
name: MTEB ToxicConversationsClassification
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
split: test
type: mteb/toxic_conversations_50k
metrics:
- type: accuracy
value: 93.173828125
- type: ap
value: 46.040184641424396
- type: f1
value: 80.77280549412752
- type: main_score
value: 93.173828125
task:
type: Classification
- dataset:
config: default
name: MTEB TweetSentimentExtractionClassification
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
split: test
type: mteb/tweet_sentiment_extraction
metrics:
- type: accuracy
value: 79.9320882852292
- type: f1
value: 80.22638685975485
- type: main_score
value: 79.9320882852292
task:
type: Classification
- dataset:
config: default
name: MTEB TwentyNewsgroupsClustering
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
split: test
type: mteb/twentynewsgroups-clustering
metrics:
- type: main_score
value: 68.98152919711418
- type: v_measure
value: 68.98152919711418
- type: v_measure_std
value: 1.2519720970652428
task:
type: Clustering
- dataset:
config: default
name: MTEB TwitterSemEval2015
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
split: test
type: mteb/twittersemeval2015-pairclassification
metrics:
- type: main_score
value: 79.34189681158234
- type: cos_sim_accuracy
value: 87.68552184538356
- type: cos_sim_accuracy_threshold
value: 76.06316804885864
- type: cos_sim_ap
value: 79.34189149773933
- type: cos_sim_f1
value: 72.16386554621849
- type: cos_sim_f1_threshold
value: 73.62890243530273
- type: cos_sim_precision
value: 71.82435964453737
- type: cos_sim_recall
value: 72.5065963060686
- type: dot_accuracy
value: 87.68552184538356
- type: dot_accuracy_threshold
value: 76.06316208839417
- type: dot_ap
value: 79.34189231911259
- type: dot_f1
value: 72.16386554621849
- type: dot_f1_threshold
value: 73.62889647483826
- type: dot_precision
value: 71.82435964453737
- type: dot_recall
value: 72.5065963060686
- type: euclidean_accuracy
value: 87.68552184538356
- type: euclidean_accuracy_threshold
value: 69.19080018997192
- type: euclidean_ap
value: 79.34189681158234
- type: euclidean_f1
value: 72.16386554621849
- type: euclidean_f1_threshold
value: 72.62383103370667
- type: euclidean_precision
value: 71.82435964453737
- type: euclidean_recall
value: 72.5065963060686
- type: manhattan_accuracy
value: 87.661679680515
- type: manhattan_accuracy_threshold
value: 3408.807373046875
- type: manhattan_ap
value: 79.29617544165136
- type: manhattan_f1
value: 72.1957671957672
- type: manhattan_f1_threshold
value: 3597.7684020996094
- type: manhattan_precision
value: 72.38726790450929
- type: manhattan_recall
value: 72.00527704485488
- type: max_accuracy
value: 87.68552184538356
- type: max_ap
value: 79.34189681158234
- type: max_f1
value: 72.1957671957672
task:
type: PairClassification
- dataset:
config: default
name: MTEB TwitterURLCorpus
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
split: test
type: mteb/twitterurlcorpus-pairclassification
metrics:
- type: main_score
value: 87.8635519535718
- type: cos_sim_accuracy
value: 89.80672953778088
- type: cos_sim_accuracy_threshold
value: 73.09532165527344
- type: cos_sim_ap
value: 87.84251379545145
- type: cos_sim_f1
value: 80.25858884373845
- type: cos_sim_f1_threshold
value: 70.57080268859863
- type: cos_sim_precision
value: 77.14103110353643
- type: cos_sim_recall
value: 83.63874345549738
- type: dot_accuracy
value: 89.80672953778088
- type: dot_accuracy_threshold
value: 73.09532761573792
- type: dot_ap
value: 87.84251881260793
- type: dot_f1
value: 80.25858884373845
- type: dot_f1_threshold
value: 70.57079076766968
- type: dot_precision
value: 77.14103110353643
- type: dot_recall
value: 83.63874345549738
- type: euclidean_accuracy
value: 89.80672953778088
- type: euclidean_accuracy_threshold
value: 73.3548641204834
- type: euclidean_ap
value: 87.84251335039049
- type: euclidean_f1
value: 80.25858884373845
- type: euclidean_f1_threshold
value: 76.71923041343689
- type: euclidean_precision
value: 77.14103110353643
- type: euclidean_recall
value: 83.63874345549738
- type: manhattan_accuracy
value: 89.78150347343501
- type: manhattan_accuracy_threshold
value: 3702.7603149414062
- type: manhattan_ap
value: 87.8635519535718
- type: manhattan_f1
value: 80.27105660516332
- type: manhattan_f1_threshold
value: 3843.5962677001953
- type: manhattan_precision
value: 76.9361101306036
- type: manhattan_recall
value: 83.90822297505389
- type: max_accuracy
value: 89.80672953778088
- type: max_ap
value: 87.8635519535718
- type: max_f1
value: 80.27105660516332
task:
type: PairClassification
---
<h1 align="center">FlagEmbedding</h1>
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
**BGE-EN-ICL** primarily demonstrates the following capabilities:
- In-context learning ability: By providing few-shot examples in the query, it can significantly enhance the model's ability to handle new tasks.
- Outstanding performance: The model has achieved state-of-the-art (SOTA) performance on both BEIR and AIR-Bench.
## 📑 Open-source Plan
- [x] Checkpoint
- [x] Training Data
- [x] Technical Report
- [ ] Evaluation Pipeline
The technical report for **BGE-EN-ICL** can be found in [Making Text Embedders Few-Shot Learners](https://arxiv.org/abs/2409.15700)
## Data List
| Data | Introduction |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| [public-data](https://huggingface.co/datasets/cfli/bge-e5data) | Public data identical to [e5-mistral](https://huggingface.co/intfloat/e5-mistral-7b-instruct) |
| [full-data](https://huggingface.co/datasets/cfli/bge-full-data) | The full dataset we used for training |
## Usage
### Using FlagEmbedding
```
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .
```
```python
from FlagEmbedding import FlagICLModel
queries = ["how much protein should a female eat", "summit define"]
documents = [
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
examples = [
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
'query': 'what is a virtual interface',
'response': "A virtual interface is a software-defined abstraction that mimics the behavior and characteristics of a physical network interface. It allows multiple logical network connections to share the same physical network interface, enabling efficient utilization of network resources. Virtual interfaces are commonly used in virtualization technologies such as virtual machines and containers to provide network connectivity without requiring dedicated hardware. They facilitate flexible network configurations and help in isolating network traffic for security and management purposes."},
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
'query': 'causes of back pain in female for a week',
'response': "Back pain in females lasting a week can stem from various factors. Common causes include muscle strain due to lifting heavy objects or improper posture, spinal issues like herniated discs or osteoporosis, menstrual cramps causing referred pain, urinary tract infections, or pelvic inflammatory disease. Pregnancy-related changes can also contribute. Stress and lack of physical activity may exacerbate symptoms. Proper diagnosis by a healthcare professional is crucial for effective treatment and management."}
]
model = FlagICLModel('BAAI/bge-en-icl',
query_instruction_for_retrieval="Given a web search query, retrieve relevant passages that answer the query.",
examples_for_task=examples, # set `examples_for_task=None` to use model without examples
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode_queries(queries)
embeddings_2 = model.encode_corpus(documents)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
By default, FlagICLModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'<instruct>{task_description}\n<query>{query}'
def get_detailed_example(task_description: str, query: str, response: str) -> str:
return f'<instruct>{task_description}\n<query>{query}\n<response>{response}'
def get_new_queries(queries, query_max_len, examples_prefix, tokenizer):
inputs = tokenizer(
queries,
max_length=query_max_len - len(tokenizer('<s>', add_special_tokens=False)['input_ids']) - len(
tokenizer('\n<response></s>', add_special_tokens=False)['input_ids']),
return_token_type_ids=False,
truncation=True,
return_tensors=None,
add_special_tokens=False
)
prefix_ids = tokenizer(examples_prefix, add_special_tokens=False)['input_ids']
suffix_ids = tokenizer('\n<response>', add_special_tokens=False)['input_ids']
new_max_length = (len(prefix_ids) + len(suffix_ids) + query_max_len + 8) // 8 * 8 + 8
new_queries = tokenizer.batch_decode(inputs['input_ids'])
for i in range(len(new_queries)):
new_queries[i] = examples_prefix + new_queries[i] + '\n<response>'
return new_max_length, new_queries
task = 'Given a web search query, retrieve relevant passages that answer the query.'
examples = [
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
'query': 'what is a virtual interface',
'response': "A virtual interface is a software-defined abstraction that mimics the behavior and characteristics of a physical network interface. It allows multiple logical network connections to share the same physical network interface, enabling efficient utilization of network resources. Virtual interfaces are commonly used in virtualization technologies such as virtual machines and containers to provide network connectivity without requiring dedicated hardware. They facilitate flexible network configurations and help in isolating network traffic for security and management purposes."},
{'instruct': 'Given a web search query, retrieve relevant passages that answer the query.',
'query': 'causes of back pain in female for a week',
'response': "Back pain in females lasting a week can stem from various factors. Common causes include muscle strain due to lifting heavy objects or improper posture, spinal issues like herniated discs or osteoporosis, menstrual cramps causing referred pain, urinary tract infections, or pelvic inflammatory disease. Pregnancy-related changes can also contribute. Stress and lack of physical activity may exacerbate symptoms. Proper diagnosis by a healthcare professional is crucial for effective treatment and management."}
]
examples = [get_detailed_example(e['instruct'], e['query'], e['response']) for e in examples]
examples_prefix = '\n\n'.join(examples) + '\n\n' # if there not exists any examples, just set examples_prefix = ''
queries = [
get_detailed_instruct(task, 'how much protein should a female eat'),
get_detailed_instruct(task, 'summit define')
]
documents = [
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
query_max_len, doc_max_len = 512, 512
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-en-icl')
model = AutoModel.from_pretrained('BAAI/bge-en-icl')
model.eval()
new_query_max_len, new_queries = get_new_queries(queries, query_max_len, examples_prefix, tokenizer)
query_batch_dict = tokenizer(new_queries, max_length=new_query_max_len, padding=True, truncation=True, return_tensors='pt')
doc_batch_dict = tokenizer(documents, max_length=doc_max_len, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
query_outputs = model(**query_batch_dict)
query_embeddings = last_token_pool(query_outputs.last_hidden_state, query_batch_dict['attention_mask'])
doc_outputs = model(**doc_batch_dict)
doc_embeddings = last_token_pool(doc_outputs.last_hidden_state, doc_batch_dict['attention_mask'])
# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
scores = (query_embeddings @ doc_embeddings.T) * 100
print(scores.tolist())
```
## Evaluation
`bge-en-icl` achieve **state-of-the-art performance on both MTEB and AIR-Bench leaderboard!**
- **[MTEB](https://huggingface.co/spaces/mteb/leaderboard)**:
![BEIR](./results/MTEB.png)
- **[BEIR](https://huggingface.co/spaces/mteb/leaderboard)**:
![BEIR](./results/BEIR.png)
- **[AIR-Bench](https://huggingface.co/spaces/AIR-Bench/leaderboard)**:
**QA (en, nDCG@10):**
| AIR-Bench_24.04 | wiki | web | news | healthcare | law | finance | arxiv | msmarco | ALL (8) |
| :--------------------------: | :-------: | :-------: | :-------: | :--------: | :-------: | :-------: | :-------: | :-------: | :-------: |
| **e5-mistral-7b-instruct** | 61.67 | 44.41 | 48.18 | 56.32 | 19.32 | 54.79 | 44.78 | 59.03 | 48.56 |
| **SFR-Embedding-Mistral** | 63.46 | 51.27 | 52.21 | 58.76 | 23.27 | 56.94 | 47.75 | 58.99 | 51.58 |
| **NV-Embed-v1** | 62.84 | 50.42 | 51.46 | 58.53 | 20.65 | 49.89 | 46.10 | 60.27 | 50.02 |
| **Linq-Embed-Mistral** | 61.04 | 48.41 | 49.44 | **60.18** | 20.34 | 50.04 | 47.56 | 60.50 | 49.69 |
| **gte-Qwen2-7B-instruct** | 63.46 | 51.20 | 54.07 | 54.20 | 22.31 | **58.20** | 40.27 | 58.39 | 50.26 |
| **stella_en_1.5B_v5** | 61.99 | 50.88 | 53.87 | 58.81 | 23.22 | 57.26 | 44.81 | 61.38 | 51.53 |
| **bge-en-icl zero-shot** | 64.61 | 54.40 | 55.11 | 57.25 | 25.10 | 54.81 | 48.46 | 63.71 | 52.93 |
| **bge-en-icl few-shot** | **64.94** | **55.11** | **56.02** | 58.85 | **28.29** | 57.16 | **50.04** | **64.50** | **54.36** |
**Long-Doc (en, Recall@10):**
| AIR-Bench_24.04 | arxiv (4) | book (2) | healthcare (5) | law (4) | ALL (15) |
| :--------------------------: | :-------: | :-------: | :------------: | :-------: | :-------: |
| **text-embedding-3-large** | 74.53 | 73.16 | 65.83 | 64.47 | 68.77 |
| **e5-mistral-7b-instruct** | 72.14 | 72.44 | 68.44 | 62.92 | 68.49 |
| **SFR-Embedding-Mistral** | 72.79 | 72.41 | 67.94 | 64.83 | 69.00 |
| **NV-Embed-v1** | 77.65 | 75.49 | 72.38 | **69.55** | 73.45 |
| **Linq-Embed-Mistral** | 75.46 | 73.81 | 71.58 | 68.58 | 72.11 |
| **gte-Qwen2-7B-instruct** | 63.93 | 68.51 | 65.59 | 65.26 | 65.45 |
| **stella_en_1.5B_v5** | 73.17 | 74.38 | 70.02 | 69.32 | 71.25 |
| **bge-en-icl zero-shot** | 78.30 | 78.21 | 73.65 | 67.09 | 73.75 |
| **bge-en-icl few-shot** | **79.63** | **79.36** | **74.80** | 67.79 | **74.83** |
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:--------------------------------------------------------------------------|:-------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|
| [BAAI/bge-en-icl](https://huggingface.co/BAAI/bge-en-icl) | English | - | A LLM-based embedding model with in-context learning capabilities, which can fully leverage the model's potential based on a few shot examples | Provide instructions and few-shot examples freely based on the given task. |
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{li2024makingtextembeddersfewshot,
title={Making Text Embedders Few-Shot Learners},
author={Chaofan Li and MingHao Qin and Shitao Xiao and Jianlyu Chen and Kun Luo and Yingxia Shao and Defu Lian and Zheng Liu},
year={2024},
eprint={2409.15700},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2409.15700},
}
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). |