update
Browse files
README.md
CHANGED
@@ -16,6 +16,7 @@ language:
|
|
16 |
<a href="#evaluation">Evaluation</a> |
|
17 |
<a href="#train">Train</a> |
|
18 |
<a href="#contact">Contact</a> |
|
|
|
19 |
<a href="#license">License</a>
|
20 |
<p>
|
21 |
</h4>
|
@@ -29,6 +30,7 @@ FlagEmbedding can map any text to a low-dimensional dense vector which can be us
|
|
29 |
And it also can be used in vector databases for LLMs.
|
30 |
|
31 |
************* 🌟**Updates**🌟 *************
|
|
|
32 |
- 09/12/2023: New Release:
|
33 |
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
|
34 |
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
@@ -63,10 +65,9 @@ And it also can be used in vector databases for LLMs.
|
|
63 |
|
64 |
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
65 |
|
66 |
-
\**: Different embedding model, reranker
|
67 |
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
68 |
|
69 |
-
|
70 |
## Frequently asked questions
|
71 |
|
72 |
<details>
|
@@ -129,7 +130,9 @@ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagO
|
|
129 |
from FlagEmbedding import FlagModel
|
130 |
sentences_1 = ["样例数据-1", "样例数据-2"]
|
131 |
sentences_2 = ["样例数据-3", "样例数据-4"]
|
132 |
-
model = FlagModel('BAAI/bge-large-zh',
|
|
|
|
|
133 |
embeddings_1 = model.encode(sentences_1)
|
134 |
embeddings_2 = model.encode(sentences_2)
|
135 |
similarity = embeddings_1 @ embeddings_2.T
|
@@ -160,7 +163,7 @@ pip install -U sentence-transformers
|
|
160 |
from sentence_transformers import SentenceTransformer
|
161 |
sentences_1 = ["样例数据-1", "样例数据-2"]
|
162 |
sentences_2 = ["样例数据-3", "样例数据-4"]
|
163 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
164 |
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
165 |
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
166 |
similarity = embeddings_1 @ embeddings_2.T
|
@@ -175,7 +178,7 @@ queries = ['query_1', 'query_2']
|
|
175 |
passages = ["样例文档-1", "样例文档-2"]
|
176 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
177 |
|
178 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
179 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
180 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
181 |
scores = q_embeddings @ p_embeddings.T
|
@@ -186,7 +189,7 @@ scores = q_embeddings @ p_embeddings.T
|
|
186 |
You can use `bge` in langchain like this:
|
187 |
```python
|
188 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
189 |
-
model_name = "BAAI/bge-
|
190 |
model_kwargs = {'device': 'cuda'}
|
191 |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
192 |
model = HuggingFaceBgeEmbeddings(
|
@@ -210,8 +213,8 @@ import torch
|
|
210 |
sentences = ["样例数据-1", "样例数据-2"]
|
211 |
|
212 |
# Load model from HuggingFace Hub
|
213 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
214 |
-
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
215 |
model.eval()
|
216 |
|
217 |
# Tokenize sentences
|
@@ -231,6 +234,7 @@ print("Sentence embeddings:", sentence_embeddings)
|
|
231 |
|
232 |
### Usage for Reranker
|
233 |
|
|
|
234 |
You can get a relevance score by inputting query and passage to the reranker.
|
235 |
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
236 |
|
@@ -240,10 +244,10 @@ The reranker is optimized based cross-entropy loss, so the relevance score is no
|
|
240 |
pip install -U FlagEmbedding
|
241 |
```
|
242 |
|
243 |
-
Get relevance
|
244 |
```python
|
245 |
from FlagEmbedding import FlagReranker
|
246 |
-
reranker = FlagReranker('BAAI/bge-reranker-
|
247 |
|
248 |
score = reranker.compute_score(['query', 'passage'])
|
249 |
print(score)
|
@@ -257,10 +261,10 @@ print(scores)
|
|
257 |
|
258 |
```python
|
259 |
import torch
|
260 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
261 |
|
262 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-
|
263 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-
|
264 |
model.eval()
|
265 |
|
266 |
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
@@ -326,7 +330,7 @@ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C
|
|
326 |
- **Reranking**:
|
327 |
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
328 |
|
329 |
-
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* |
|
330 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
331 |
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
332 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
@@ -339,13 +343,13 @@ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for
|
|
339 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
340 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
341 |
|
342 |
-
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval
|
343 |
|
344 |
## Train
|
345 |
|
346 |
### BAAI Embedding
|
347 |
|
348 |
-
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
349 |
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
350 |
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
351 |
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
@@ -368,6 +372,20 @@ If you have any question or suggestion related to this project, feel free to ope
|
|
368 |
You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
|
369 |
|
370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
## License
|
372 |
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
373 |
|
|
|
16 |
<a href="#evaluation">Evaluation</a> |
|
17 |
<a href="#train">Train</a> |
|
18 |
<a href="#contact">Contact</a> |
|
19 |
+
<a href="#citation">Citation</a> |
|
20 |
<a href="#license">License</a>
|
21 |
<p>
|
22 |
</h4>
|
|
|
30 |
And it also can be used in vector databases for LLMs.
|
31 |
|
32 |
************* 🌟**Updates**🌟 *************
|
33 |
+
- 09/15/2023: Release [paper](https://arxiv.org/pdf/2309.07597.pdf) and [dataset](https://data.baai.ac.cn/details/BAAI-MTP).
|
34 |
- 09/12/2023: New Release:
|
35 |
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
|
36 |
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
|
|
65 |
|
66 |
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
67 |
|
68 |
+
\**: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
69 |
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
70 |
|
|
|
71 |
## Frequently asked questions
|
72 |
|
73 |
<details>
|
|
|
130 |
from FlagEmbedding import FlagModel
|
131 |
sentences_1 = ["样例数据-1", "样例数据-2"]
|
132 |
sentences_2 = ["样例数据-3", "样例数据-4"]
|
133 |
+
model = FlagModel('BAAI/bge-large-zh-v1.5',
|
134 |
+
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
135 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
136 |
embeddings_1 = model.encode(sentences_1)
|
137 |
embeddings_2 = model.encode(sentences_2)
|
138 |
similarity = embeddings_1 @ embeddings_2.T
|
|
|
163 |
from sentence_transformers import SentenceTransformer
|
164 |
sentences_1 = ["样例数据-1", "样例数据-2"]
|
165 |
sentences_2 = ["样例数据-3", "样例数据-4"]
|
166 |
+
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
167 |
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
168 |
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
169 |
similarity = embeddings_1 @ embeddings_2.T
|
|
|
178 |
passages = ["样例文档-1", "样例文档-2"]
|
179 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
180 |
|
181 |
+
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
182 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
183 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
184 |
scores = q_embeddings @ p_embeddings.T
|
|
|
189 |
You can use `bge` in langchain like this:
|
190 |
```python
|
191 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
192 |
+
model_name = "BAAI/bge-large-en-v1.5"
|
193 |
model_kwargs = {'device': 'cuda'}
|
194 |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
195 |
model = HuggingFaceBgeEmbeddings(
|
|
|
213 |
sentences = ["样例数据-1", "样例数据-2"]
|
214 |
|
215 |
# Load model from HuggingFace Hub
|
216 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
|
217 |
+
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
|
218 |
model.eval()
|
219 |
|
220 |
# Tokenize sentences
|
|
|
234 |
|
235 |
### Usage for Reranker
|
236 |
|
237 |
+
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
|
238 |
You can get a relevance score by inputting query and passage to the reranker.
|
239 |
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
240 |
|
|
|
244 |
pip install -U FlagEmbedding
|
245 |
```
|
246 |
|
247 |
+
Get relevance scores (higher scores indicate more relevance):
|
248 |
```python
|
249 |
from FlagEmbedding import FlagReranker
|
250 |
+
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
251 |
|
252 |
score = reranker.compute_score(['query', 'passage'])
|
253 |
print(score)
|
|
|
261 |
|
262 |
```python
|
263 |
import torch
|
264 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
265 |
|
266 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
267 |
+
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
|
268 |
model.eval()
|
269 |
|
270 |
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
|
330 |
- **Reranking**:
|
331 |
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
332 |
|
333 |
+
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
334 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
335 |
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
336 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
|
|
343 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
344 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
345 |
|
346 |
+
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
|
347 |
|
348 |
## Train
|
349 |
|
350 |
### BAAI Embedding
|
351 |
|
352 |
+
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
|
353 |
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
354 |
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
355 |
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
|
|
372 |
You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
|
373 |
|
374 |
|
375 |
+
## Citation
|
376 |
+
|
377 |
+
If you find our work helpful, please cite us:
|
378 |
+
```
|
379 |
+
@misc{bge_embedding,
|
380 |
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
381 |
+
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
382 |
+
year={2023},
|
383 |
+
eprint={2309.07597},
|
384 |
+
archivePrefix={arXiv},
|
385 |
+
primaryClass={cs.CL}
|
386 |
+
}
|
387 |
+
```
|
388 |
+
|
389 |
## License
|
390 |
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
391 |
|