Update README.md
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
8 |
---
|
9 |
|
10 |
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
|
@@ -25,6 +25,17 @@ This allows you to obtain token weights (similar to the BM25) without any additi
|
|
25 |
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
## FAQ
|
29 |
|
30 |
**1. Introduction for different retrieval methods**
|
@@ -72,13 +83,17 @@ pip install -U FlagEmbedding
|
|
72 |
```python
|
73 |
from FlagEmbedding import BGEM3FlagModel
|
74 |
|
75 |
-
model = BGEM3FlagModel('BAAI/bge-m3',
|
|
|
76 |
|
77 |
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
78 |
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
79 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
80 |
|
81 |
-
embeddings_1 = model.encode(sentences_1
|
|
|
|
|
|
|
82 |
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
83 |
similarity = embeddings_1 @ embeddings_2.T
|
84 |
print(similarity)
|
@@ -148,13 +163,17 @@ sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical
|
|
148 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
149 |
|
150 |
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
151 |
-
|
|
|
|
|
|
|
|
|
152 |
# {
|
153 |
-
#
|
154 |
-
#
|
155 |
-
#
|
156 |
-
#
|
157 |
-
#
|
158 |
# }
|
159 |
```
|
160 |
|
@@ -172,8 +191,10 @@ print(model.compute_score(sentence_pairs))
|
|
172 |
![avatar](./imgs/mkqa.jpg)
|
173 |
|
174 |
- Long Document Retrieval
|
175 |
-
|
176 |
-
![avatar](./imgs/long.jpg)
|
|
|
|
|
177 |
|
178 |
|
179 |
## Training
|
@@ -191,8 +212,8 @@ Refer to our [report](https://github.com/FlagOpen/FlagEmbedding/blob/master/Flag
|
|
191 |
## Models
|
192 |
|
193 |
We release two versions:
|
194 |
-
-
|
195 |
-
-
|
196 |
|
197 |
## Acknowledgement
|
198 |
|
@@ -204,7 +225,4 @@ If you find this repository useful, please consider giving a star :star: and cit
|
|
204 |
|
205 |
```
|
206 |
|
207 |
-
```
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
license: mit
|
8 |
---
|
9 |
|
10 |
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
|
|
|
25 |
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
|
26 |
|
27 |
|
28 |
+
## Model Specs
|
29 |
+
|
30 |
+
| Model Name | Dimension | Sequence Length |
|
31 |
+
|:----:|:---:|:---:|
|
32 |
+
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 |
|
33 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 |
|
34 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 |
|
35 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
## FAQ
|
40 |
|
41 |
**1. Introduction for different retrieval methods**
|
|
|
83 |
```python
|
84 |
from FlagEmbedding import BGEM3FlagModel
|
85 |
|
86 |
+
model = BGEM3FlagModel('BAAI/bge-m3',
|
87 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
88 |
|
89 |
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
90 |
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
91 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
92 |
|
93 |
+
embeddings_1 = model.encode(sentences_1,
|
94 |
+
batch_size=12,
|
95 |
+
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
|
96 |
+
)['dense_vecs']
|
97 |
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
98 |
similarity = embeddings_1 @ embeddings_2.T
|
99 |
print(similarity)
|
|
|
163 |
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
164 |
|
165 |
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
166 |
+
|
167 |
+
print(model.compute_score(sentence_pairs,
|
168 |
+
max_passage_length=128, # a smaller max length leads to a lower latency
|
169 |
+
weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
|
170 |
+
|
171 |
# {
|
172 |
+
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
|
173 |
+
# 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
|
174 |
+
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
|
175 |
+
# 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
|
176 |
+
# 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
|
177 |
# }
|
178 |
```
|
179 |
|
|
|
191 |
![avatar](./imgs/mkqa.jpg)
|
192 |
|
193 |
- Long Document Retrieval
|
194 |
+
- MLDR:
|
195 |
+
![avatar](./imgs/long.jpg)
|
196 |
+
- NarritiveQA:
|
197 |
+
![avatar](./imgs/nqa.jpg)
|
198 |
|
199 |
|
200 |
## Training
|
|
|
212 |
## Models
|
213 |
|
214 |
We release two versions:
|
215 |
+
- BAAI/bge-m3-unsupervised: the model after contrastive learning in a large-scale dataset
|
216 |
+
- BAAI/bge-m3: the final model fine-tuned from BAAI/bge-m3-unsupervised
|
217 |
|
218 |
## Acknowledgement
|
219 |
|
|
|
225 |
|
226 |
```
|
227 |
|
228 |
+
```
|
|
|
|
|
|