Upload 11 files
Browse files- ReadMe.md +130 -0
- imgs/SFT-CIRR.png +0 -0
- imgs/SFT-ReMuQ.png +0 -0
- imgs/SFT-WebQA.png +0 -0
- imgs/cir_candi_1.png +0 -0
- imgs/cir_candi_2.png +0 -0
- imgs/cir_query.png +0 -0
- imgs/wiki_candi_1.jpg +0 -0
- imgs/wiki_candi_2.jpg +0 -0
- imgs/zs-benchmark.png +0 -0
- imgs/zs-performance.png +0 -0
ReadMe.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Visualized BGE
|
2 |
+
|
3 |
+
|
4 |
+
In this project, we introduce Visualized-BGE, a universal multi-modal embedding model. By integrating image token embedding into the BGE Text Embedding framework, Visualized-BGE is equipped to handle multi-modal data that extends beyond text in a flexible manner. Visualized-BGE is mainly used for hybrid modal retrieval tasks, including but not limited to:
|
5 |
+
|
6 |
+
- Multi-Modal Knowledge Retrieval (query: text; candidate: image-text pairs, text, or image) e.g. [WebQA](https://github.com/WebQnA/WebQA)
|
7 |
+
- Composed Image Retrieval (query: image-text pair; candidate: images) e.g. [CIRR](), [FashionIQ]()
|
8 |
+
- Knowledge Retrieval with Multi-Modal Queries (query: image-text pair; candidate: texts) e.g. [ReMuQ]()
|
9 |
+
|
10 |
+
Moreover, Visualized BGE fully preserves the strong text embedding capabilities of the original BGE model : )
|
11 |
+
|
12 |
+
## Specs
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
### Model
|
17 |
+
| **Model Name** | **Dimension** | **Text Embedding Model** | **Language** | **Weight** |
|
18 |
+
| --- | --- | --- | --- | --- |
|
19 |
+
| BAAI/bge-visualized-base-en-v1.5 | 768 | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [🤗 HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_base_en_v1.5.pth) |
|
20 |
+
| BAAI/bge-visualized-m3 | 1024 | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [🤗 HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_m3.pth) |
|
21 |
+
|
22 |
+
|
23 |
+
### Data
|
24 |
+
We have generated a hybrid multi-modal dataset consisting of over 500,000 instances for training. The dataset will be released at a later time.
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
### Installation:
|
28 |
+
#### Install FlagEmbedding:
|
29 |
+
```
|
30 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
31 |
+
cd FlagEmbedding
|
32 |
+
pip install -e .
|
33 |
+
```
|
34 |
+
#### Another Core Packages:
|
35 |
+
```
|
36 |
+
pip install torchvision timm einops ftfy
|
37 |
+
```
|
38 |
+
You don't need to install `xformer` and `apex`. They are not essential for inference and can often cause issues.
|
39 |
+
|
40 |
+
### Generate Embedding for Multi-Modal Data:
|
41 |
+
You have the flexibility to use Visualized-BGE encoding for multi-modal data in various formats. This includes data that is exclusively text-based, solely image-based, or a combination of both text and image data.
|
42 |
+
|
43 |
+
> **Note:** Please download the model weight file ([bge-visualized-base-en-v1.5](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_base_en_v1.5.pth?download=true), [bge-visualized-m3](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_m3.pth?download=true)) in advance and pass the path to the `model_weight` parameter.
|
44 |
+
|
45 |
+
- Composed Image Retrival
|
46 |
+
``` python
|
47 |
+
############ Use Visualized BGE doing composed image retrieval
|
48 |
+
import torch
|
49 |
+
from FlagEmbedding.visual.modeling import Visualized_BGE
|
50 |
+
|
51 |
+
model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth")
|
52 |
+
model.eval()
|
53 |
+
with torch.no_grad():
|
54 |
+
query_emb = model.encode(image="./imgs/cir_query.png", text="Make the background dark, as if the camera has taken the photo at night")
|
55 |
+
candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png")
|
56 |
+
candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png")
|
57 |
+
|
58 |
+
sim_1 = query_emb @ candi_emb_1.T
|
59 |
+
sim_2 = query_emb @ candi_emb_2.T
|
60 |
+
print(sim_1, sim_2) # tensor([[0.8750]]) tensor([[0.7816]])
|
61 |
+
```
|
62 |
+
|
63 |
+
- Multi-Modal Knowledge Retrieval
|
64 |
+
``` python
|
65 |
+
####### Use Visualized BGE doing multi-modal knowledge retrieval
|
66 |
+
import torch
|
67 |
+
from FlagEmbedding.visual.modeling import Visualized_BGE
|
68 |
+
|
69 |
+
model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth")
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
query_emb = model.encode(text="Are there sidewalks on both sides of the Mid-Hudson Bridge?")
|
73 |
+
candi_emb_1 = model.encode(text="The Mid-Hudson Bridge, spanning the Hudson River between Poughkeepsie and Highland.", image="./imgs/wiki_candi_1.jpg")
|
74 |
+
candi_emb_2 = model.encode(text="Golden_Gate_Bridge", image="./imgs/wiki_candi_2.jpg")
|
75 |
+
candi_emb_3 = model.encode(text="The Mid-Hudson Bridge was designated as a New York State Historic Civil Engineering Landmark by the American Society of Civil Engineers in 1983. The bridge was renamed the \"Franklin Delano Roosevelt Mid-Hudson Bridge\" in 1994.")
|
76 |
+
|
77 |
+
sim_1 = query_emb @ candi_emb_1.T
|
78 |
+
sim_2 = query_emb @ candi_emb_2.T
|
79 |
+
sim_3 = query_emb @ candi_emb_3.T
|
80 |
+
print(sim_1, sim_2, sim_3) # tensor([[0.6932]]) tensor([[0.4441]]) tensor([[0.6415]])
|
81 |
+
```
|
82 |
+
|
83 |
+
- Multilingual Multi-Modal Retrieval
|
84 |
+
``` python
|
85 |
+
##### Use M3 doing Multilingual Multi-Modal Retrieval
|
86 |
+
|
87 |
+
import torch
|
88 |
+
from FlagEmbedding.visual.modeling import Visualized_BGE
|
89 |
+
|
90 |
+
model = Visualized_BGE(model_name_bge = "BAAI/bge-m3", model_weight="path: Visualized_m3.pth")
|
91 |
+
model.eval()
|
92 |
+
with torch.no_grad():
|
93 |
+
query_emb = model.encode(image="./imgs/cir_query.png", text="一匹马牵着这辆车")
|
94 |
+
candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png")
|
95 |
+
candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png")
|
96 |
+
|
97 |
+
sim_1 = query_emb @ candi_emb_1.T
|
98 |
+
sim_2 = query_emb @ candi_emb_2.T
|
99 |
+
print(sim_1, sim_2) # tensor([[0.7026]]) tensor([[0.8075]])
|
100 |
+
```
|
101 |
+
|
102 |
+
## Evaluation Result
|
103 |
+
Visualized BGE delivers outstanding zero-shot performance across multiple hybrid modal retrieval tasks. It can also serve as a base model for downstream fine-tuning for hybrid modal retrieval tasks.
|
104 |
+
#### Zero-shot Performance
|
105 |
+
- Statistical information of the zero-shot multi-modal retrieval benchmark datasets. During the zero-shot evaluation, we utilize the queries from the validation or test set of each dataset to perform retrieval assessments within the entire corpus of the respective dataset.
|
106 |
+
![Statistical information for the zero-shot multi-modal retrieval benchmark datasets.](./imgs/zs-benchmark.png)
|
107 |
+
|
108 |
+
- Zero-shot evaluation results with Recall@5 on various hybrid multi-modal retrieval benchmarks. The -MM notation indicates baseline models that have undergone multi-modal training on our generated data.
|
109 |
+
![Zero-shot evaluation results with Recall@5 on various hybrid multi-modal retrieval benchmarks.](./imgs/zs-performance.png)
|
110 |
+
|
111 |
+
#### Fine-tuning on Downstream Tasks
|
112 |
+
- Supervised fine-tuning performance on the WebQA dataset. All retrievals are performed on the entire deduplicated corpus.
|
113 |
+
![image.png](./imgs/SFT-WebQA.png)
|
114 |
+
- Supervised fine-tuning performance on the CIRR test set.
|
115 |
+
![image.png](./imgs/SFT-CIRR.png)
|
116 |
+
- Supervised fine-tuning performance on the ReMuQ test set.
|
117 |
+
![image.png](./imgs/SFT-ReMuQ.png)
|
118 |
+
## FAQ
|
119 |
+
|
120 |
+
**Q1: Can Visualized BGE be used for cross-modal retrieval (text to image)?**
|
121 |
+
|
122 |
+
A1: While it is technically possible, it's not the recommended use case. Our model focus on augmenting hybrid modal retrieval tasks with visual capabilities.
|
123 |
+
|
124 |
+
## Acknowledgement
|
125 |
+
The image token embedding model in this project is built upon the foundations laid by [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP).
|
126 |
+
|
127 |
+
## Citation
|
128 |
+
If you find this repository useful, please consider giving a star ⭐ and citation
|
129 |
+
> Paper will be released soon
|
130 |
+
|
imgs/SFT-CIRR.png
ADDED
imgs/SFT-ReMuQ.png
ADDED
imgs/SFT-WebQA.png
ADDED
imgs/cir_candi_1.png
ADDED
imgs/cir_candi_2.png
ADDED
imgs/cir_query.png
ADDED
imgs/wiki_candi_1.jpg
ADDED
imgs/wiki_candi_2.jpg
ADDED
imgs/zs-benchmark.png
ADDED
imgs/zs-performance.png
ADDED