Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,9 +1,109 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
-
-
|
4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
|
3 |
tags:
|
4 |
+
- vit_base_patch8_224
|
5 |
+
- BigEarthNet v2.0
|
6 |
+
- Remote Sensing
|
7 |
+
- Classification
|
8 |
+
- image-classification
|
9 |
+
- Multispectral
|
10 |
+
library_name: configilm
|
11 |
+
license: mit
|
12 |
+
widget:
|
13 |
+
- src: example.png
|
14 |
+
example_title: Example
|
15 |
+
output:
|
16 |
+
- label: Agro-forestry areas
|
17 |
+
score: 0.005420
|
18 |
+
- label: Arable land
|
19 |
+
score: 0.011554
|
20 |
+
- label: Beaches, dunes, sands
|
21 |
+
score: 0.655520
|
22 |
+
- label: Broad-leaved forest
|
23 |
+
score: 0.092251
|
24 |
+
- label: Coastal wetlands
|
25 |
+
score: 0.000302
|
26 |
---
|
27 |
|
28 |
+
[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
|
29 |
+
:---:|:---:|:---:|:---:|:---:
|
30 |
+
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
|
31 |
+
|
32 |
+
# Vit_base_patch8_224 pretrained on BigEarthNet v2.0 using Sentinel-1 & Sentinel-2 bands
|
33 |
+
|
34 |
+
<!-- Optional images -->
|
35 |
+
<!--
|
36 |
+
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
|
37 |
+
:---:|:---:
|
38 |
+
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
|
39 |
+
-->
|
40 |
+
|
41 |
+
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 & Sentinel-2 bands.
|
42 |
+
It was trained using the following parameters:
|
43 |
+
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average
|
44 |
+
precision macro)
|
45 |
+
- Batch size: 512
|
46 |
+
- Learning rate: 0.001
|
47 |
+
- Dropout rate: 0.15
|
48 |
+
- Drop Path rate: 0.15
|
49 |
+
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
|
50 |
+
- Optimizer: AdamW
|
51 |
+
- Seed: 42
|
52 |
+
|
53 |
+
The weights published in this model card were obtained after 25 training epochs.
|
54 |
+
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.
|
55 |
+
|
56 |
+
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
|
57 |
+
|
58 |
+
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
|
59 |
+
|
60 |
+
| Metric | Macro | Micro |
|
61 |
+
|:------------------|------------------:|------------------:|
|
62 |
+
| Average Precision | 0.661272 | 0.839712 |
|
63 |
+
| F1 Score | 0.604241 | 0.742744 |
|
64 |
+
| Precision | 0.697575 | 0.781491 |
|
65 |
+
|
66 |
+
# Example
|
67 |
+
| A Sentinel-2 image (true color representation) |
|
68 |
+
|:---------------------------------------------------:|
|
69 |
+
| ![[BigEarthNet](http://bigearth.net/)](example.png) |
|
70 |
+
|
71 |
+
| Class labels | Predicted scores |
|
72 |
+
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
|
73 |
+
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.005420 <br> 0.011554 <br> 0.655520 <br> ... <br> 0.107838 </p> |
|
74 |
+
|
75 |
+
|
76 |
+
To use the model, download the codes that define the model architecture from the
|
77 |
+
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
|
78 |
+
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.
|
79 |
+
|
80 |
+
```python
|
81 |
+
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
82 |
+
|
83 |
+
model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
|
84 |
+
```
|
85 |
+
|
86 |
+
e.g.
|
87 |
+
|
88 |
+
```python
|
89 |
+
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
|
90 |
+
|
91 |
+
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
|
92 |
+
"BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-all-v0.1.1")
|
93 |
+
```
|
94 |
+
|
95 |
+
If you use this model in your research or the provided code, please cite the following papers:
|
96 |
+
```bibtex
|
97 |
+
CITATION FOR DATASET PAPER
|
98 |
+
```
|
99 |
+
```bibtex
|
100 |
+
@article{hackel2024configilm,
|
101 |
+
title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
|
102 |
+
author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
|
103 |
+
journal={SoftwareX},
|
104 |
+
volume={26},
|
105 |
+
pages={101731},
|
106 |
+
year={2024},
|
107 |
+
publisher={Elsevier}
|
108 |
+
}
|
109 |
+
```
|