Upload config.toml with huggingface_hub
Browse files- config.toml +55 -0
config.toml
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bucket_no_upscale = true
|
2 |
+
bucket_reso_steps = 64
|
3 |
+
cache_latents = true
|
4 |
+
caption_extension = ".txt"
|
5 |
+
clip_skip = 1
|
6 |
+
dynamo_backend = "no"
|
7 |
+
enable_bucket = true
|
8 |
+
epoch = 20
|
9 |
+
gradient_accumulation_steps = 1
|
10 |
+
huber_c = 0.1
|
11 |
+
huber_schedule = "snr"
|
12 |
+
huggingface_repo_id = "BKM1804/lora_cluster"
|
13 |
+
huggingface_repo_type = "model"
|
14 |
+
huggingface_repo_visibility = "public"
|
15 |
+
learning_rate = 0.0001
|
16 |
+
loss_type = "l2"
|
17 |
+
lr_scheduler = "cosine_with_restarts"
|
18 |
+
lr_scheduler_args = []
|
19 |
+
lr_scheduler_num_cycles = 1
|
20 |
+
lr_scheduler_power = 1
|
21 |
+
lr_warmup_steps = 300
|
22 |
+
max_bucket_reso = 2048
|
23 |
+
max_data_loader_n_workers = 0
|
24 |
+
max_grad_norm = 1
|
25 |
+
max_timestep = 1000
|
26 |
+
max_token_length = 75
|
27 |
+
max_train_steps = 3000
|
28 |
+
min_bucket_reso = 256
|
29 |
+
min_snr_gamma = 5
|
30 |
+
mixed_precision = "fp16"
|
31 |
+
multires_noise_discount = 0.3
|
32 |
+
network_alpha = 128
|
33 |
+
network_args = []
|
34 |
+
network_dim = 128
|
35 |
+
network_module = "networks.lora"
|
36 |
+
no_half_vae = true
|
37 |
+
noise_offset = 0.1
|
38 |
+
noise_offset_type = "Original"
|
39 |
+
optimizer_args = []
|
40 |
+
optimizer_type = "AdamW"
|
41 |
+
output_dir = "/workspace/kohya_ss/outputs"
|
42 |
+
output_name = "last"
|
43 |
+
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
44 |
+
prior_loss_weight = 1
|
45 |
+
resolution = "512"
|
46 |
+
sample_prompts = "/workspace/kohya_ss/outputs/prompt.txt"
|
47 |
+
sample_sampler = "euler_a"
|
48 |
+
save_every_n_epochs = 1
|
49 |
+
save_model_as = "safetensors"
|
50 |
+
save_precision = "fp16"
|
51 |
+
text_encoder_lr = 4e-5
|
52 |
+
train_batch_size = 1
|
53 |
+
train_data_dir = "/workspace/data/img"
|
54 |
+
unet_lr = 0.0001
|
55 |
+
xformers = true
|