--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: hubert-base-ft-keyword-spotting results: [] --- # hubert-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 - Accuracy: 0.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0422 | 1.0 | 399 | 0.8999 | 0.6918 | | 0.3296 | 2.0 | 798 | 0.1505 | 0.9778 | | 0.2088 | 3.0 | 1197 | 0.0901 | 0.9816 | | 0.202 | 4.0 | 1596 | 0.0848 | 0.9813 | | 0.1535 | 5.0 | 1995 | 0.0774 | 0.9819 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3