File size: 2,183 Bytes
b1e0dbb 46943b8 b1e0dbb 46943b8 b1e0dbb 46943b8 b1e0dbb 46943b8 261635b 46943b8 b1e0dbb 46943b8 b1e0dbb 261635b b1e0dbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
tags:
- image-classification
- ecology
- animals
- re-identification
library_name: wildlife-datasets
license: cc-by-nc-4.0
---
# Model card for MegaDescriptor-L-224
A Swin-L image feature model. Supervisely pre-trained on animal re-identification datasets.
## Model Details
- **Model Type:** Animal re-identification / feature backbone
- **Model Stats:**
- Params (M): 228.6
- Image size: 224 x 224
- Architecture: swin_large_patch4_window7_224
- **Paper:** [WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification](https://openaccess.thecvf.com/content/WACV2024/html/Cermak_WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification_WACV_2024_paper.html)
- **Related Papers:**
- [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
- [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/pdf/2304.07193.pdf)
- **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
## Model Usage
### Image Embeddings
```python
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-L-224", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize(224),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# output is a (1, num_features) shaped tensor
```
## Citation
```bibtex
@inproceedings{vcermak2024wildlifedatasets,
title={WildlifeDatasets: An open-source toolkit for animal re-identification},
author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={5953--5963},
year={2024}
}
``` |