BabaYaga048
commited on
Commit
•
b6230bf
1
Parent(s):
523eb4b
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0c469c3ff42db574856b558eeba559d4eb04a8e5ab7186dee4b04618c32dc13
|
3 |
+
size 106828
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7df0d83cf6d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7df0d83d0b00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 100000,
|
23 |
+
"_total_timesteps": 100000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691924314419003707,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYRs2PunJ0TyS3t8++FVdv8aUST/WVRM/c+VTP5xxML9V7wk/WDArPy1BTr621qg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnuYVP87ZiD9VWMM//F9av4gIPj9ixcA/tr2HP1IjyL+2ouI+5LOrP7Sh/74p5gC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhGzY+6cnRPJLe3z4uT6s+ynekOwy6lD74VV2/xpRJP9ZVEz/S/IS/0v6RP76Eyz9z5VM/nHEwv1XvCT/41xA+/vpsv6Lseb9YMCs/LUFOvrbWqD6iRrk//5jRv6szqL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.17783882 0.02560897 0.43724495]\n [-0.864593 0.78742635 0.5755285 ]\n [ 0.82771987 -0.68923354 0.53880817]\n [ 0.6687064 -0.2014205 0.3297631 ]]",
|
34 |
+
"desired_goal": "[[ 0.5855502 1.0691469 1.5261332 ]\n [-0.8530271 0.7423177 1.5060236 ]\n [ 1.060477 -1.5635779 0.44264764]\n [ 1.3414273 -0.49928057 -0.50351197]]",
|
35 |
+
"observation": "[[ 0.17783882 0.02560897 0.43724495 0.33458847 0.00501916 0.29048193]\n [-0.864593 0.78742635 0.5755285 -1.0389655 1.140589 1.5899885 ]\n [ 0.82771987 -0.68923354 0.53880817 0.14144886 -0.92570484 -0.976267 ]\n [ 0.6687064 -0.2014205 0.3297631 1.447468 -1.6374816 -1.3140768 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbnjlPI+AQL0MRr89MesVvhwW6j1gfoU+1OihvSXcUzxp+IE+pbP7PCE8pr1rays9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.02801153 -0.0469976 0.09339532]\n [-0.146405 0.11429998 0.2607298 ]\n [-0.07905737 0.0129309 0.25384834]\n [ 0.03072531 -0.08116937 0.04185049]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8Wznied07uMAWyUSwOMAXSUR0B1hoeeWfK7dX2UKGgGR7/JWjoIOYplaAdLA2gIR0B1hMsrd30PdX2UKGgGR7/buc+aBqbjaAdLBGgIR0B1gu0mdAgQdX2UKGgGR7/UO09hZyMlaAdLA2gIR0B1gTcmBvrGdX2UKGgGR7/Rgf2bobGWaAdLA2gIR0B1hvHCGetkdX2UKGgGR7/JCdBjWkJsaAdLA2gIR0B1hUdbPhQ4dX2UKGgGR7/VYg7o0Q9SaAdLBGgIR0B1g4h4dIXkdX2UKGgGR7/SsGgSOBDpaAdLA2gIR0B1h2YzBRAKdX2UKGgGR7+hZZB9kSVXaAdLAWgIR0B1g6nO0LMLdX2UKGgGR7/P8stkFwDOaAdLA2gIR0B1ha1twaR7dX2UKGgGR7+/CdjG1hLHaAdLAmgIR0B1h624NI9UdX2UKGgGR7+jgqEvkBCEaAdLAWgIR0B1h+Rr8BMjdX2UKGgGR7/BG8VYZEUkaAdLAmgIR0B1hgkqtozvdX2UKGgGR7/Qxm03Ov+waAdLA2gIR0B1hCpcX3xndX2UKGgGR7/Y6RyOq//OaAdLB2gIR0B1gk9lmOENdX2UKGgGR7+/neSB9TgmaAdLAmgIR0B1hk7KaG5+dX2UKGgGR7+2Nn5BTn7paAdLAmgIR0B1gpNVR1oydX2UKGgGR7/R+9rXUYsNaAdLA2gIR0B1iE7q6e5GdX2UKGgGR7/THrQgLZzxaAdLA2gIR0B1hJKEnLJTdX2UKGgGR7/G5AhStNi6aAdLA2gIR0B1hsSxqwhXdX2UKGgGR7+4UpNKyv9taAdLAmgIR0B1hOXsw+MZdX2UKGgGR7/HRR/EwWWQaAdLA2gIR0B1iMauOjqOdX2UKGgGR7+jRplBhQWOaAdLAWgIR0B1hurbQC0XdX2UKGgGR7/aAnDziCJ5aAdLBGgIR0B1gy/VRUFTdX2UKGgGR7+Dnq3VkMCtaAdLAWgIR0B1iOuV5a/zdX2UKGgGR7/Bz06HTI/8aAdLAmgIR0B1hy619fCzdX2UKGgGR7/aIl+mWMS9aAdLBGgIR0B1hW7HyVfNdX2UKGgGR7/Ie4Cp3os7aAdLA2gIR0B1g5SqEOAidX2UKGgGR7/PjkuHvc8DaAdLA2gIR0B1iWIFeOXFdX2UKGgGR7+836yjYZl4aAdLAmgIR0B1h4a1kUbldX2UKGgGR7+8xQBPsRg7aAdLAmgIR0B1g+fywwCbdX2UKGgGR7/CnUlRgqmTaAdLAmgIR0B1iaI9C/oJdX2UKGgGR7/OXzlLeyiVaAdLA2gIR0B1heY3Ns3ydX2UKGgGR7/Twzch1TzeaAdLA2gIR0B1h+d3B55adX2UKGgGR7/D+aScLBsRaAdLA2gIR0B1hEq4H5aedX2UKGgGR7/MqlxffGdaaAdLA2gIR0B1ihfoicG1dX2UKGgGR7/C0waisXBQaAdLAmgIR0B1iDvNNahYdX2UKGgGR7/Xs+FDfFaTaAdLBGgIR0B1hn4M4LkTdX2UKGgGR7+6CoS+QEIPaAdLAmgIR0B1hKKfnOjZdX2UKGgGR7/QAuZkTYdyaAdLA2gIR0B1in4Ju2qldX2UKGgGR7/SSFGoaUA1aAdLA2gIR0B1iKIHkcS5dX2UKGgGR7+7wmVqveP8aAdLAmgIR0B1hOaJAMUidX2UKGgGR7/VRSP2f02+aAdLA2gIR0B1huOgg5imdX2UKGgGR7/CUeMhouf3aAdLAmgIR0B1itSLqD9PdX2UKGgGR7+84Qz1schlaAdLAmgIR0B1hTwZwXImdX2UKGgGR7+KtLcsUZeiaAdLAWgIR0B1ivezlcQidX2UKGgGR7/YVI7NjbztaAdLBGgIR0B1iTjDKoycdX2UKGgGR7/W/OdGy5ZsaAdLBGgIR0B1h3idat9ydX2UKGgGR7/TDQJHAh0RaAdLA2gIR0B1hZ/smfGudX2UKGgGR7+0aya/h2nsaAdLAmgIR0B1iX1yvLX+dX2UKGgGR7/R0+TvAoG6aAdLBGgIR0B1i40FbFCLdX2UKGgGR7+3cynDR+jNaAdLAmgIR0B1hfdl/YrbdX2UKGgGR7+1D7ZWaMJhaAdLAmgIR0B1i9WKdhAodX2UKGgGR7/LPu5SWJJoaAdLA2gIR0B1ifmvGIbgdX2UKGgGR7/YQNTcZccEaAdLBGgIR0B1iBrFfiPydX2UKGgGR7/KkB0ZFXq8aAdLA2gIR0B1hmDFqBVddX2UKGgGR7/CgyM1jy4GaAdLAmgIR0B1jBxCIDYAdX2UKGgGR7+8DzRQaaTfaAdLAmgIR0B1iGBjFyaNdX2UKGgGR7/MMkyDZlFuaAdLA2gIR0B1inSncclxdX2UKGgGR7/AZE2Hck+paAdLAmgIR0B1iLNt65XmdX2UKGgGR7/QyGzru6VdaAdLA2gIR0B1jJSeiBXkdX2UKGgGR7/V0L+glF+eaAdLBGgIR0B1hv4593KTdX2UKGgGR7/TFLWZqmCRaAdLA2gIR0B1itqWTot+dX2UKGgGR7/AVVxS5y2haAdLAmgIR0B1iPw7T2FndX2UKGgGR7/KqgAZKnNxaAdLA2gIR0B1jQtFrl/6dX2UKGgGR7+84n4O+ZgHaAdLAmgIR0B1iU94eLeidX2UKGgGR7/RVRDTjNpuaAdLA2gIR0B1h3R1HOKPdX2UKGgGR7+peRgZ0jkdaAdLAWgIR0B1jTEcbR4RdX2UKGgGR7/RBy0a6z3RaAdLA2gIR0B1i1Vn27FsdX2UKGgGR7/CyNXHR1HOaAdLAmgIR0B1iZZ1V5rydX2UKGgGR7/JwnYxtYSyaAdLA2gIR0B1jZgssg+ydX2UKGgGR7/Cao/A0sOHaAdLAmgIR0B1id9jPOY6dX2UKGgGR7/ZO4oZydWiaAdLBGgIR0B1iARSP2f1dX2UKGgGR7/Y/G2kSElFaAdLBGgIR0B1i/J5mh/RdX2UKGgGR7/I6nzg/C66aAdLA2gIR0B1il2icoYvdX2UKGgGR7/CmNzbN8mbaAdLA2gIR0B1iIoBq9GrdX2UKGgGR7/Tyo4uK4x2aAdLBGgIR0B1jk7fYSQHdX2UKGgGR7/LXmNipeeGaAdLA2gIR0B1jHfWMCLddX2UKGgGR7/B9E1EVnEmaAdLAmgIR0B1iOfYjB2wdX2UKGgGR7/AIomXw9aEaAdLAmgIR0B1jrVmSQo1dX2UKGgGR7+3iVB2OhkBaAdLAmgIR0B1jNjAi3XqdX2UKGgGR7/MsNlRP421aAdLA2gIR0B1ivpRoAXEdX2UKGgGR7+W65Gz8gp0aAdLAWgIR0B1ixnscABDdX2UKGgGR7++PeYUnG83aAdLAmgIR0B1jRwVCXyBdX2UKGgGR7/QU7Sy+pOvaAdLA2gIR0B1iWKqGUOedX2UKGgGR7/KvhZQpF1CaAdLA2gIR0B1jx2ovSMMdX2UKGgGR7+/544ZMtbtaAdLAmgIR0B1i2EUTL4fdX2UKGgGR7/KOvMbFS88aAdLA2gIR0B1jZKvmozfdX2UKGgGR7/KGahHskY5aAdLA2gIR0B1j5IDoyKvdX2UKGgGR7/RZQpF1B+naAdLA2gIR0B1i9egL7XQdX2UKGgGR7/YZU1hsqJ/aAdLBGgIR0B1ify08eS0dX2UKGgGR7/RsJIDoyKvaAdLA2gIR0B1jfr7fpEAdX2UKGgGR7/NmXgLqlguaAdLA2gIR0B1j/kLhJiBdX2UKGgGR7/HVNpM6BAfaAdLA2gIR0B1jD6CUX54dX2UKGgGR7/bh/y5I6KcaAdLBGgIR0B1ipQCSzPbdX2UKGgGR7/Tk8ifQKKHaAdLA2gIR0B1kGqOtGNJdX2UKGgGR7/VFINEw35vaAdLBGgIR0B1jo6S1Vo6dX2UKGgGR7/T5Pdl/YrbaAdLA2gIR0B1jLIq9XcQdX2UKGgGR7/Mq7ROUMXraAdLA2gIR0B1iv8/D+BIdX2UKGgGR7/Dz0Yj0L+haAdLAmgIR0B1kLm/336AdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 5000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0eb4e3f225cc9a745ad077e0e88b9c36ddfa1caa7d30a39cd94f2f554ae1d6ae
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47b0cd2b1fda8d4c8968de49f5413dfa636b0916543ed15c1def2b8f94375723
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7df0d83cf6d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7df0d83d0b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691924314419003707, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYRs2PunJ0TyS3t8++FVdv8aUST/WVRM/c+VTP5xxML9V7wk/WDArPy1BTr621qg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnuYVP87ZiD9VWMM//F9av4gIPj9ixcA/tr2HP1IjyL+2ouI+5LOrP7Sh/74p5gC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhGzY+6cnRPJLe3z4uT6s+ynekOwy6lD74VV2/xpRJP9ZVEz/S/IS/0v6RP76Eyz9z5VM/nHEwv1XvCT/41xA+/vpsv6Lseb9YMCs/LUFOvrbWqD6iRrk//5jRv6szqL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.17783882 0.02560897 0.43724495]\n [-0.864593 0.78742635 0.5755285 ]\n [ 0.82771987 -0.68923354 0.53880817]\n [ 0.6687064 -0.2014205 0.3297631 ]]", "desired_goal": "[[ 0.5855502 1.0691469 1.5261332 ]\n [-0.8530271 0.7423177 1.5060236 ]\n [ 1.060477 -1.5635779 0.44264764]\n [ 1.3414273 -0.49928057 -0.50351197]]", "observation": "[[ 0.17783882 0.02560897 0.43724495 0.33458847 0.00501916 0.29048193]\n [-0.864593 0.78742635 0.5755285 -1.0389655 1.140589 1.5899885 ]\n [ 0.82771987 -0.68923354 0.53880817 0.14144886 -0.92570484 -0.976267 ]\n [ 0.6687064 -0.2014205 0.3297631 1.447468 -1.6374816 -1.3140768 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbnjlPI+AQL0MRr89MesVvhwW6j1gfoU+1OihvSXcUzxp+IE+pbP7PCE8pr1rays9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02801153 -0.0469976 0.09339532]\n [-0.146405 0.11429998 0.2607298 ]\n [-0.07905737 0.0129309 0.25384834]\n [ 0.03072531 -0.08116937 0.04185049]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8Wznied07uMAWyUSwOMAXSUR0B1hoeeWfK7dX2UKGgGR7/JWjoIOYplaAdLA2gIR0B1hMsrd30PdX2UKGgGR7/buc+aBqbjaAdLBGgIR0B1gu0mdAgQdX2UKGgGR7/UO09hZyMlaAdLA2gIR0B1gTcmBvrGdX2UKGgGR7/Rgf2bobGWaAdLA2gIR0B1hvHCGetkdX2UKGgGR7/JCdBjWkJsaAdLA2gIR0B1hUdbPhQ4dX2UKGgGR7/VYg7o0Q9SaAdLBGgIR0B1g4h4dIXkdX2UKGgGR7/SsGgSOBDpaAdLA2gIR0B1h2YzBRAKdX2UKGgGR7+hZZB9kSVXaAdLAWgIR0B1g6nO0LMLdX2UKGgGR7/P8stkFwDOaAdLA2gIR0B1ha1twaR7dX2UKGgGR7+/CdjG1hLHaAdLAmgIR0B1h624NI9UdX2UKGgGR7+jgqEvkBCEaAdLAWgIR0B1h+Rr8BMjdX2UKGgGR7/BG8VYZEUkaAdLAmgIR0B1hgkqtozvdX2UKGgGR7/Qxm03Ov+waAdLA2gIR0B1hCpcX3xndX2UKGgGR7/Y6RyOq//OaAdLB2gIR0B1gk9lmOENdX2UKGgGR7+/neSB9TgmaAdLAmgIR0B1hk7KaG5+dX2UKGgGR7+2Nn5BTn7paAdLAmgIR0B1gpNVR1oydX2UKGgGR7/R+9rXUYsNaAdLA2gIR0B1iE7q6e5GdX2UKGgGR7/THrQgLZzxaAdLA2gIR0B1hJKEnLJTdX2UKGgGR7/G5AhStNi6aAdLA2gIR0B1hsSxqwhXdX2UKGgGR7+4UpNKyv9taAdLAmgIR0B1hOXsw+MZdX2UKGgGR7/HRR/EwWWQaAdLA2gIR0B1iMauOjqOdX2UKGgGR7+jRplBhQWOaAdLAWgIR0B1hurbQC0XdX2UKGgGR7/aAnDziCJ5aAdLBGgIR0B1gy/VRUFTdX2UKGgGR7+Dnq3VkMCtaAdLAWgIR0B1iOuV5a/zdX2UKGgGR7/Bz06HTI/8aAdLAmgIR0B1hy619fCzdX2UKGgGR7/aIl+mWMS9aAdLBGgIR0B1hW7HyVfNdX2UKGgGR7/Ie4Cp3os7aAdLA2gIR0B1g5SqEOAidX2UKGgGR7/PjkuHvc8DaAdLA2gIR0B1iWIFeOXFdX2UKGgGR7+836yjYZl4aAdLAmgIR0B1h4a1kUbldX2UKGgGR7+8xQBPsRg7aAdLAmgIR0B1g+fywwCbdX2UKGgGR7/CnUlRgqmTaAdLAmgIR0B1iaI9C/oJdX2UKGgGR7/OXzlLeyiVaAdLA2gIR0B1heY3Ns3ydX2UKGgGR7/Twzch1TzeaAdLA2gIR0B1h+d3B55adX2UKGgGR7/D+aScLBsRaAdLA2gIR0B1hEq4H5aedX2UKGgGR7/MqlxffGdaaAdLA2gIR0B1ihfoicG1dX2UKGgGR7/C0waisXBQaAdLAmgIR0B1iDvNNahYdX2UKGgGR7/Xs+FDfFaTaAdLBGgIR0B1hn4M4LkTdX2UKGgGR7+6CoS+QEIPaAdLAmgIR0B1hKKfnOjZdX2UKGgGR7/QAuZkTYdyaAdLA2gIR0B1in4Ju2qldX2UKGgGR7/SSFGoaUA1aAdLA2gIR0B1iKIHkcS5dX2UKGgGR7+7wmVqveP8aAdLAmgIR0B1hOaJAMUidX2UKGgGR7/VRSP2f02+aAdLA2gIR0B1huOgg5imdX2UKGgGR7/CUeMhouf3aAdLAmgIR0B1itSLqD9PdX2UKGgGR7+84Qz1schlaAdLAmgIR0B1hTwZwXImdX2UKGgGR7+KtLcsUZeiaAdLAWgIR0B1ivezlcQidX2UKGgGR7/YVI7NjbztaAdLBGgIR0B1iTjDKoycdX2UKGgGR7/W/OdGy5ZsaAdLBGgIR0B1h3idat9ydX2UKGgGR7/TDQJHAh0RaAdLA2gIR0B1hZ/smfGudX2UKGgGR7+0aya/h2nsaAdLAmgIR0B1iX1yvLX+dX2UKGgGR7/R0+TvAoG6aAdLBGgIR0B1i40FbFCLdX2UKGgGR7+3cynDR+jNaAdLAmgIR0B1hfdl/YrbdX2UKGgGR7+1D7ZWaMJhaAdLAmgIR0B1i9WKdhAodX2UKGgGR7/LPu5SWJJoaAdLA2gIR0B1ifmvGIbgdX2UKGgGR7/YQNTcZccEaAdLBGgIR0B1iBrFfiPydX2UKGgGR7/KkB0ZFXq8aAdLA2gIR0B1hmDFqBVddX2UKGgGR7/CgyM1jy4GaAdLAmgIR0B1jBxCIDYAdX2UKGgGR7+8DzRQaaTfaAdLAmgIR0B1iGBjFyaNdX2UKGgGR7/MMkyDZlFuaAdLA2gIR0B1inSncclxdX2UKGgGR7/AZE2Hck+paAdLAmgIR0B1iLNt65XmdX2UKGgGR7/QyGzru6VdaAdLA2gIR0B1jJSeiBXkdX2UKGgGR7/V0L+glF+eaAdLBGgIR0B1hv4593KTdX2UKGgGR7/TFLWZqmCRaAdLA2gIR0B1itqWTot+dX2UKGgGR7/AVVxS5y2haAdLAmgIR0B1iPw7T2FndX2UKGgGR7/KqgAZKnNxaAdLA2gIR0B1jQtFrl/6dX2UKGgGR7+84n4O+ZgHaAdLAmgIR0B1iU94eLeidX2UKGgGR7/RVRDTjNpuaAdLA2gIR0B1h3R1HOKPdX2UKGgGR7+peRgZ0jkdaAdLAWgIR0B1jTEcbR4RdX2UKGgGR7/RBy0a6z3RaAdLA2gIR0B1i1Vn27FsdX2UKGgGR7/CyNXHR1HOaAdLAmgIR0B1iZZ1V5rydX2UKGgGR7/JwnYxtYSyaAdLA2gIR0B1jZgssg+ydX2UKGgGR7/Cao/A0sOHaAdLAmgIR0B1id9jPOY6dX2UKGgGR7/ZO4oZydWiaAdLBGgIR0B1iARSP2f1dX2UKGgGR7/Y/G2kSElFaAdLBGgIR0B1i/J5mh/RdX2UKGgGR7/I6nzg/C66aAdLA2gIR0B1il2icoYvdX2UKGgGR7/CmNzbN8mbaAdLA2gIR0B1iIoBq9GrdX2UKGgGR7/Tyo4uK4x2aAdLBGgIR0B1jk7fYSQHdX2UKGgGR7/LXmNipeeGaAdLA2gIR0B1jHfWMCLddX2UKGgGR7/B9E1EVnEmaAdLAmgIR0B1iOfYjB2wdX2UKGgGR7/AIomXw9aEaAdLAmgIR0B1jrVmSQo1dX2UKGgGR7+3iVB2OhkBaAdLAmgIR0B1jNjAi3XqdX2UKGgGR7/MsNlRP421aAdLA2gIR0B1ivpRoAXEdX2UKGgGR7+W65Gz8gp0aAdLAWgIR0B1ixnscABDdX2UKGgGR7++PeYUnG83aAdLAmgIR0B1jRwVCXyBdX2UKGgGR7/QU7Sy+pOvaAdLA2gIR0B1iWKqGUOedX2UKGgGR7/KvhZQpF1CaAdLA2gIR0B1jx2ovSMMdX2UKGgGR7+/544ZMtbtaAdLAmgIR0B1i2EUTL4fdX2UKGgGR7/KOvMbFS88aAdLA2gIR0B1jZKvmozfdX2UKGgGR7/KGahHskY5aAdLA2gIR0B1j5IDoyKvdX2UKGgGR7/RZQpF1B+naAdLA2gIR0B1i9egL7XQdX2UKGgGR7/YZU1hsqJ/aAdLBGgIR0B1ify08eS0dX2UKGgGR7/RsJIDoyKvaAdLA2gIR0B1jfr7fpEAdX2UKGgGR7/NmXgLqlguaAdLA2gIR0B1j/kLhJiBdX2UKGgGR7/HVNpM6BAfaAdLA2gIR0B1jD6CUX54dX2UKGgGR7/bh/y5I6KcaAdLBGgIR0B1ipQCSzPbdX2UKGgGR7/Tk8ifQKKHaAdLA2gIR0B1kGqOtGNJdX2UKGgGR7/VFINEw35vaAdLBGgIR0B1jo6S1Vo6dX2UKGgGR7/T5Pdl/YrbaAdLA2gIR0B1jLIq9XcQdX2UKGgGR7/Mq7ROUMXraAdLA2gIR0B1iv8/D+BIdX2UKGgGR7/Dz0Yj0L+haAdLAmgIR0B1kLm/336AdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (682 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.232224721647799, "std_reward": 0.10821074163948756, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-13T11:20:28.653905"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd7c6ee45763fdb7271a27455fc79539c036a24b4b7a6855c0157150e14a8a7a
|
3 |
+
size 2623
|