--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: whisper-medium-common_voice_17_0-id-10000 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 id type: mozilla-foundation/common_voice_17_0 config: id split: None args: id metrics: - name: Wer type: wer value: 0.04241496125110214 --- # whisper-medium-common_voice_17_0-id-10000 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.0574 - Wer: 0.0424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.132 | 0.8457 | 1000 | 0.0963 | 0.0747 | | 0.0503 | 1.6913 | 2000 | 0.0664 | 0.0526 | | 0.023 | 2.5370 | 3000 | 0.0628 | 0.0727 | | 0.011 | 3.3827 | 4000 | 0.0593 | 0.0437 | | 0.0033 | 4.2283 | 5000 | 0.0575 | 0.0407 | | 0.0017 | 5.0740 | 6000 | 0.0574 | 0.0448 | | 0.0013 | 5.9197 | 7000 | 0.0554 | 0.0386 | | 0.002 | 6.7653 | 8000 | 0.0555 | 0.0426 | | 0.0002 | 7.6110 | 9000 | 0.0571 | 0.0421 | | 0.0005 | 8.4567 | 10000 | 0.0574 | 0.0424 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1