--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - conll2003job metrics: - precision - recall - f1 - accuracy model-index: - name: my_xlm-roberta-large-finetuned-conlljob04 results: - task: name: Token Classification type: token-classification dataset: name: conll2003job type: conll2003job config: conll2003job split: validation args: conll2003job metrics: - name: Precision type: precision value: 0.961673640167364 - name: Recall type: recall value: 0.9670144732413329 - name: F1 type: f1 value: 0.964336661911555 - name: Accuracy type: accuracy value: 0.9935750165491998 --- # my_xlm-roberta-large-finetuned-conlljob04 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the conll2003job dataset. It achieves the following results on the evaluation set: - Loss: 0.0420 - Precision: 0.9617 - Recall: 0.9670 - F1: 0.9643 - Accuracy: 0.9936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1566 | 1.0 | 896 | 0.0403 | 0.9425 | 0.9542 | 0.9483 | 0.9911 | | 0.0319 | 2.0 | 1792 | 0.0359 | 0.9523 | 0.9571 | 0.9547 | 0.9922 | | 0.0156 | 3.0 | 2688 | 0.0356 | 0.9594 | 0.9625 | 0.9609 | 0.9929 | | 0.01 | 4.0 | 3584 | 0.0377 | 0.9604 | 0.9672 | 0.9638 | 0.9934 | | 0.0058 | 5.0 | 4480 | 0.0398 | 0.9618 | 0.9662 | 0.9640 | 0.9934 | | 0.0034 | 6.0 | 5376 | 0.0420 | 0.9617 | 0.9670 | 0.9643 | 0.9936 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1