--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 - Wer: 0.1037 - Cer: 0.0382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 0.0104 | 1.0 | 407 | 0.0098 | 0.1182 | 0.0449 | | 0.0068 | 2.0 | 814 | 0.0088 | 0.1055 | 0.0373 | | 0.0075 | 3.0 | 1221 | 0.0088 | 0.1008 | 0.0356 | | 0.0057 | 4.0 | 1628 | 0.0091 | 0.0992 | 0.0345 | | 0.0047 | 5.0 | 2035 | 0.0097 | 0.0997 | 0.0349 | | 0.0038 | 6.0 | 2442 | 0.0103 | 0.0994 | 0.0340 | | 0.0024 | 7.0 | 2849 | 0.0109 | 0.1033 | 0.0357 | | 0.0031 | 8.0 | 3256 | 0.0113 | 0.1015 | 0.0351 | | 0.0014 | 9.0 | 3663 | 0.0118 | 0.1003 | 0.0350 | | 0.0018 | 10.0 | 4070 | 0.0123 | 0.1014 | 0.0349 | | 0.0013 | 11.0 | 4477 | 0.0128 | 0.1122 | 0.0405 | | 0.0011 | 12.0 | 4884 | 0.0130 | 0.1037 | 0.0379 | | 0.0004 | 13.0 | 5291 | 0.0132 | 0.1032 | 0.0379 | | 0.0019 | 14.0 | 5698 | 0.0141 | 0.1055 | 0.0397 | | 0.001 | 14.9643 | 6090 | 0.0135 | 0.1017 | 0.0371 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0