--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0152 - Wer: 0.0967 - Cer: 0.0379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0017 | 1.0 | 469 | 0.0106 | 0.0956 | 0.0363 | | 0.0011 | 2.0 | 938 | 0.0111 | 0.0970 | 0.0371 | | 0.0008 | 3.0 | 1407 | 0.0115 | 0.0976 | 0.0372 | | 0.001 | 4.0 | 1876 | 0.0123 | 0.0974 | 0.0372 | | 0.0004 | 5.0 | 2345 | 0.0128 | 0.0963 | 0.0367 | | 0.0001 | 6.0 | 2814 | 0.0130 | 0.0939 | 0.0360 | | 0.0004 | 7.0 | 3283 | 0.0135 | 0.0932 | 0.0348 | | 0.0001 | 8.0 | 3752 | 0.0138 | 0.0929 | 0.0353 | | 0.0 | 9.0 | 4221 | 0.0142 | 0.0914 | 0.0347 | | 0.0 | 10.0 | 4690 | 0.0146 | 0.0919 | 0.0345 | | 0.0 | 11.0 | 5159 | 0.0149 | 0.0929 | 0.0345 | | 0.0 | 12.0 | 5628 | 0.0151 | 0.0936 | 0.0345 | | 0.0 | 13.0 | 6097 | 0.0154 | 0.0929 | 0.0344 | | 0.0 | 14.0 | 6566 | 0.0165 | 0.0946 | 0.0366 | | 0.0 | 15.0 | 7035 | 0.0156 | 0.0934 | 0.0346 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0