--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BH results: [] --- # Whisper base AR - BH This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0124 - Wer: 11.8561 - Cer: 3.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:-------:| | 0.0124 | 0.2895 | 800 | 6.9720 | 0.0166 | 21.3510 | | 0.0076 | 0.5790 | 1600 | 4.4857 | 0.0124 | 14.3371 | | 0.0042 | 0.8685 | 2400 | 4.2342 | 0.0112 | 13.1816 | | 0.0053 | 1.1581 | 3200 | 4.8224 | 0.0133 | 14.4143 | | 0.0041 | 1.4476 | 4000 | 4.0206 | 0.0121 | 12.9768 | | 0.0023 | 1.7371 | 4800 | 3.7118 | 0.0116 | 11.9643 | | 0.0022 | 2.0268 | 5600 | 4.0467 | 0.0125 | 12.7101 | | 0.002 | 2.3163 | 6400 | 3.7803 | 0.0125 | 12.1962 | | 0.0016 | 2.6058 | 7200 | 3.7763 | 0.0124 | 12.2696 | | 0.0018 | 2.8952 | 8000 | 3.6627 | 0.0122 | 12.0570 | | 0.0013 | 3.1849 | 8800 | 0.0126 | 12.0957 | 3.6893 | | 0.0015 | 3.4744 | 9600 | 0.0126 | 12.2232 | 3.6893 | | 0.0013 | 3.7639 | 10400 | 0.0124 | 11.8561 | 3.6023 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0