--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0121 - Wer: 13.2495 - Cer: 4.3278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:----:|:-------:|:---------------:|:--------:| | 0.0258 | 0.1408 | 400 | 52.2218 | 0.0246 | 104.9348 | | 0.0177 | 0.2817 | 800 | 10.2633 | 0.0184 | 26.2089 | | 0.0116 | 0.4225 | 1200 | 7.3210 | 0.0160 | 20.9517 | | 0.0101 | 0.5633 | 1600 | 5.8227 | 0.0141 | 17.5020 | | 0.008 | 0.7042 | 2000 | 5.1235 | 0.0127 | 16.3695 | | 0.0057 | 0.8450 | 2400 | 4.8168 | 0.0119 | 15.2343 | | 0.0056 | 0.9858 | 2800 | 4.6678 | 0.0116 | 14.6364 | | 0.0071 | 1.1267 | 3200 | 0.0135 | 15.8929 | 5.3042 | | 0.0059 | 1.2676 | 3600 | 0.0132 | 15.7165 | 5.0437 | | 0.0056 | 1.4084 | 4000 | 0.0124 | 14.5758 | 5.3648 | | 0.0041 | 1.5492 | 4400 | 0.0122 | 14.2259 | 4.7531 | | 0.0038 | 1.6901 | 4800 | 0.0120 | 13.8043 | 4.7431 | | 0.004 | 1.8309 | 5200 | 0.0119 | 14.1818 | 4.9569 | | 0.0036 | 1.9717 | 5600 | 0.0118 | 14.0743 | 4.9171 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0