Upload GPTJXForCausalLM
Browse files- pretrained_model.py +4 -61
pretrained_model.py
CHANGED
@@ -173,9 +173,6 @@ class GPTJXForCausalLM(PreTrainedModel):
|
|
173 |
device = idx.device
|
174 |
b, t = idx.size()
|
175 |
|
176 |
-
# attn_mask = _prepare_mask_(idx, b, eval)
|
177 |
-
# print("attention mask: ", attn_mask)
|
178 |
-
|
179 |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
180 |
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
|
181 |
|
@@ -186,17 +183,16 @@ class GPTJXForCausalLM(PreTrainedModel):
|
|
186 |
for block in self.transformer.h:
|
187 |
x = block(x, attn_mask=attn_mask)
|
188 |
x = self.transformer.ln_f(x)
|
|
|
|
|
189 |
|
190 |
if targets is not None:
|
191 |
-
#
|
192 |
-
logits = self.lm_head(x)
|
193 |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
194 |
else:
|
195 |
-
#
|
196 |
-
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
197 |
loss = None
|
198 |
|
199 |
-
# return {"logits": logits, "loss": loss}
|
200 |
return CausalLMOutputWithPast(
|
201 |
loss=loss,
|
202 |
logits=logits,
|
@@ -213,38 +209,6 @@ class GPTJXForCausalLM(PreTrainedModel):
|
|
213 |
model_inputs["attn_mask"] = attention_mask
|
214 |
|
215 |
return model_inputs
|
216 |
-
|
217 |
-
|
218 |
-
# @torch.no_grad()
|
219 |
-
# def stream(self, idx, max_new_tokens, temperature=1.0, top_k=None,gen_mode="greedy"):
|
220 |
-
# """
|
221 |
-
# Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
222 |
-
# the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
223 |
-
# Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
224 |
-
# """
|
225 |
-
# for _ in range(max_new_tokens):
|
226 |
-
# # if the sequence context is growing too long we must crop it at block_size
|
227 |
-
# idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
228 |
-
# # forward the model to get the logits for the index in the sequence
|
229 |
-
# logits, _ = self(idx_cond, eval=True)
|
230 |
-
# # pluck the logits at the final step and scale by desired temperature
|
231 |
-
# logits = logits[:, -1, :] / temperature
|
232 |
-
# # optionally crop the logits to only the top k options
|
233 |
-
# if top_k is not None:
|
234 |
-
# v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
235 |
-
# logits[logits < v[:, [-1]]] = -float('Inf')
|
236 |
-
# # apply softmax to convert logits to (normalized) probabilities
|
237 |
-
# probs = F.softmax(logits, dim=-1)
|
238 |
-
# # sample from the distribution
|
239 |
-
# if gen_mode == 'greedy':
|
240 |
-
# idx_next = torch.argmax(probs, dim=-1).unsqueeze(0)
|
241 |
-
|
242 |
-
# else:
|
243 |
-
# idx_next = torch.multinomial(probs, num_samples=1)
|
244 |
-
# # print(idx_next.shape, idx.shape)
|
245 |
-
# idx = torch.cat((idx, idx_next), dim=1)
|
246 |
-
# # append sampled index to the running sequence and continue
|
247 |
-
# yield idx_next
|
248 |
|
249 |
|
250 |
def crop_block_size(self, block_size):
|
@@ -263,24 +227,3 @@ AutoConfig.register("nanogpt-j", GPTJXConfig)
|
|
263 |
AutoModel.register(GPTJXConfig,GPTJXForCausalLM)
|
264 |
AutoModelForCausalLM.register(GPTJXConfig, GPTJXForCausalLM)
|
265 |
|
266 |
-
|
267 |
-
# if __name__ == '__main__':
|
268 |
-
# from transformers import AutoTokenizer
|
269 |
-
|
270 |
-
# tokenizer = AutoTokenizer.from_pretrained("BeardedMonster/SabiYarn")
|
271 |
-
# input_ids = tokenizer("Awọn eeyan Cairo, ni Egypt ti bẹrẹ si n to lawọn ileesẹ to n ṣe burẹdi bayii.", return_tensors="pt")["input_ids"]
|
272 |
-
# targets = input_ids
|
273 |
-
|
274 |
-
# # config = GPTJConfig()
|
275 |
-
# # config.save_pretrained("gptj-config")
|
276 |
-
# # new_config = GPTJ.from_pretrained("gptj-config")
|
277 |
-
# # model = GPTJ(config)
|
278 |
-
# # state_dict = torch.load('model.pt', map_location="cpu")
|
279 |
-
# # model.load_state_dict(state_dict)
|
280 |
-
# model = GPTJXForCausalLM.from_pretrained("/pretrainedmodel")
|
281 |
-
# # model.save_pretrained("/pretrainedmodel")
|
282 |
-
# # outputs = model(input_ids, targets)
|
283 |
-
# # print(outputs)
|
284 |
-
# output = model.generate(input_ids, max_new_tokens=50)
|
285 |
-
# print(tokenizer.decode(output[0]))
|
286 |
-
# print(new_config)
|
|
|
173 |
device = idx.device
|
174 |
b, t = idx.size()
|
175 |
|
|
|
|
|
|
|
176 |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
177 |
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
|
178 |
|
|
|
183 |
for block in self.transformer.h:
|
184 |
x = block(x, attn_mask=attn_mask)
|
185 |
x = self.transformer.ln_f(x)
|
186 |
+
|
187 |
+
logits = self.lm_head(x) # logits over the entire sequence, shape (b, t, vocab_size)
|
188 |
|
189 |
if targets is not None:
|
190 |
+
# If targets are provided, compute the loss
|
|
|
191 |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
192 |
else:
|
193 |
+
# Inference-time: return logits for each timestep
|
|
|
194 |
loss = None
|
195 |
|
|
|
196 |
return CausalLMOutputWithPast(
|
197 |
loss=loss,
|
198 |
logits=logits,
|
|
|
209 |
model_inputs["attn_mask"] = attention_mask
|
210 |
|
211 |
return model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
|
214 |
def crop_block_size(self, block_size):
|
|
|
227 |
AutoModel.register(GPTJXConfig,GPTJXForCausalLM)
|
228 |
AutoModelForCausalLM.register(GPTJXConfig, GPTJXForCausalLM)
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|