--- language: - jpn license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.4585 - Der: 0.1815 - False Alarm: 0.0615 - Missed Detection: 0.0694 - Confusion: 0.0506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3855 | 1.0 | 362 | 0.4769 | 0.1895 | 0.0554 | 0.0764 | 0.0577 | | 0.3977 | 2.0 | 724 | 0.4610 | 0.1879 | 0.0668 | 0.0693 | 0.0518 | | 0.3778 | 3.0 | 1086 | 0.4577 | 0.1805 | 0.0597 | 0.0703 | 0.0505 | | 0.3558 | 4.0 | 1448 | 0.4600 | 0.1812 | 0.0606 | 0.0703 | 0.0503 | | 0.3335 | 5.0 | 1810 | 0.4585 | 0.1815 | 0.0615 | 0.0694 | 0.0506 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1