--- license: agpl-3.0 library_name: ultralytics datasets: - wider_face --- # YOLOv8 for Face Detection ## Datasets ### Face - [Anime Face CreateML](https://universe.roboflow.com/my-workspace-mph8o/anime-face-createml) - [xml2txt](https://universe.roboflow.com/0oooooo0/xml2txt-njqx1) - [AN](https://universe.roboflow.com/sed-b8vkf/an-lfg5i) - [wider face](http://shuoyang1213.me/WIDERFACE/index.html) ### Hand - [AnHDet](https://universe.roboflow.com/1-yshhi/anhdet) - [hand-detection-fuao9](https://universe.roboflow.com/catwithawand/hand-detection-fuao9) ## Info | Model | Target | mAP 50 | mAP 50-95 | | ------------------ | ------------------- | ------ | --------- | | face_yolov8n.pt | 2D / realistic face | 0.660 | 0.366 | | face_yolov8n_v2.pt | 2D / realistic face | 0.669 | 0.372 | | face_yolov8s.pt | 2D / realistic face | 0.713 | 0.404 | | face_yolov8m.pt | 2D / realistic face | 0.737 | 0.424 | | hand_yolov8n.pt | 2D / realistic hand | 0.767 | 0.505 | ## Usage ```python from huggingface_hub import hf_hub_download from ultralytics import YOLO path = hf_hub_download("Bingsu/adetailer", "face_yolov8n.pt") model = YOLO(path) ``` ```python import cv2 from PIL import Image img = "https://farm5.staticflickr.com/4139/4887614566_6b57ec4422_z.jpg" output = model(img) pred = output[0].plot() pred = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB) pred = Image.fromarray(pred) pred ``` ![image](https://i.imgur.com/9ny1wmD.png)