|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""YaLM model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
YALM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class YalmConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`YalmModel`]. It is used to instantiate an YaLM |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the YaLM-100B. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
Args: |
|
padded_vocab_size (`int`, *optional*, defaults to 128000): |
|
Vocabulary size of the YaLM model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`YalmModel`] |
|
embedding_size (`int`, *optional*, defaults to 2048): |
|
Token embeding dimension |
|
hidden_size (`int`, *optional*, defaults to 10240): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 27308): |
|
Dimension of the MLP representations. |
|
num_layers (`int`, *optional*, defaults to 80): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 128): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to True): |
|
Whether to scale attention output by inverse layer depth |
|
activation_type (`str` or `function`, *optional*, defaults to `"geglu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): |
|
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layernorm_epsilon (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
Example: |
|
```python |
|
>>> from transformers import YalmModel, YalmConfig |
|
>>> # Initializing a YaLM yalm-100b style configuration |
|
>>> configuration = YalmConfig() |
|
>>> # Initializing a model from the yalm-100b style configuration |
|
>>> model = YalmModel(configuration) |
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "yalm" |
|
|
|
def __init__( |
|
self, |
|
padded_vocab_size=128000, |
|
embedding_size=2048, |
|
hidden_size=10240, |
|
intermediate_size=27308, |
|
num_layers=80, |
|
num_attention_heads=128, |
|
scale_attn_by_inverse_layer_idx=True, |
|
activation_type="geglu", |
|
max_position_embeddings=1024, |
|
apply_residual_connection_post_layernorm=False, |
|
initializer_range=0.02, |
|
layernorm_epsilon=1e-5, |
|
attention_dropout=0.1, |
|
hidden_dropout=0.1, |
|
use_cache=True, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
**kwargs, |
|
): |
|
self.padded_vocab_size = padded_vocab_size |
|
self.embedding_size = embedding_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_layers = num_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx |
|
self.activation_type = activation_type |
|
self.max_position_embeddings = max_position_embeddings |
|
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm |
|
self.initializer_range = initializer_range |
|
self.layernorm_epsilon = layernorm_epsilon |
|
self.attention_dropout = attention_dropout |
|
self.hidden_dropout = hidden_dropout |
|
self.use_cache = use_cache |
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
|