File size: 1,393 Bytes
060b78b 0be695e 060b78b 0be695e 8ce9232 0be695e 060b78b 0be695e a07420d 0be695e 1e8417a 296e423 9024fcb 605a997 2bb4c10 2739b27 ea1f914 29fbd06 697dc39 b97b0b6 697dc39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- en
tags:
- pytorch
- text-generation
- causal-lm
- rwkv
license: apache-2.0
datasets:
- the_pile
---
# RWKV-4 7B
## Model Description
RWKV-4 7B is a L32-D4096 causal language model trained on the Pile. See https://github.com/BlinkDL/RWKV-LM for details.
Use https://github.com/BlinkDL/ChatRWKV to run it.
ctx_len = 1024
n_layer = 32
n_embd = 4096
RWKV-4-Pile-7B-20230109-ctx4096.pth : Fine-tuned to ctx_len 4096.
* Likely the best. Please test.
RWKV-4-Pile-7B-20230xxx-ctx8192-testxxx : Fine-tuned to ctx_len 8192.
* Slightly weaker than ctx4096 model when ctxlen < 3k.
RWKV-4-Pile-7B-20221115-8047.pth : Trained on the Pile for 332B tokens.
* Pile loss 1.8415T
* LAMBADA ppl 4.38, acc 67.18%
* PIQA acc 76.06%
* SC2016 acc 73.44%
* Hellaswag acc_norm 65.51%
### Instruct-test models: only useful if you construct your prompt following dataset templates
Note I am using "Q: instruct\n\nA: result" prompt for all instructs.
RWKV-4-Pile-7B-Instruct-test1
instruct-tuned on https://huggingface.co/datasets/bigscience/xP3all/viewer/en/train
RWKV-4-Pile-7B-Instruct-test2
instruct-tuned on https://huggingface.co/datasets/Muennighoff/flan & NIv2
### Chinese models
RWKV-4-Pile-7B-EngChn-testNovel-xxx for writing Chinese novels (trained on 200G Chinese novels.)
RWKV-4-Pile-7B-EngChn-testxxx for Chinese Q&A (trained on 10G Chinese text. only for testing purposes.)
|