File size: 1,393 Bytes
060b78b
0be695e
 
 
 
 
 
 
060b78b
0be695e
8ce9232
0be695e
060b78b
0be695e
 
 
 
 
 
 
a07420d
0be695e
 
 
1e8417a
 
296e423
9024fcb
605a997
2bb4c10
 
 
2739b27
ea1f914
29fbd06
 
 
 
697dc39
 
 
b97b0b6
 
697dc39
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language:
- en
tags:
- pytorch
- text-generation
- causal-lm
- rwkv
license: apache-2.0
datasets:
- the_pile

---

# RWKV-4 7B

## Model Description

RWKV-4 7B is a L32-D4096 causal language model trained on the Pile. See https://github.com/BlinkDL/RWKV-LM for details.

Use https://github.com/BlinkDL/ChatRWKV to run it.

ctx_len = 1024
n_layer = 32
n_embd = 4096

RWKV-4-Pile-7B-20230109-ctx4096.pth : Fine-tuned to ctx_len 4096.
* Likely the best. Please test.

RWKV-4-Pile-7B-20230xxx-ctx8192-testxxx : Fine-tuned to ctx_len 8192.
* Slightly weaker than ctx4096 model when ctxlen < 3k.

RWKV-4-Pile-7B-20221115-8047.pth : Trained on the Pile for 332B tokens.
* Pile loss 1.8415T
* LAMBADA ppl 4.38, acc 67.18%
* PIQA acc 76.06%
* SC2016 acc 73.44%
* Hellaswag acc_norm 65.51%

### Instruct-test models: only useful if you construct your prompt following dataset templates

Note I am using "Q: instruct\n\nA: result" prompt for all instructs.

RWKV-4-Pile-7B-Instruct-test1
instruct-tuned on https://huggingface.co/datasets/bigscience/xP3all/viewer/en/train

RWKV-4-Pile-7B-Instruct-test2
instruct-tuned on https://huggingface.co/datasets/Muennighoff/flan & NIv2

### Chinese models

RWKV-4-Pile-7B-EngChn-testNovel-xxx for writing Chinese novels (trained on 200G Chinese novels.)

RWKV-4-Pile-7B-EngChn-testxxx for Chinese Q&A (trained on 10G Chinese text. only for testing purposes.)