File size: 142,887 Bytes
6a6aa21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
program(1.0)
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.0.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
{
func main<ios16>(tensor<fp16, [1, 3, 384, 384]> x) {
tensor<int32, []> var_15 = const()[name = tensor<string, []>("op_15"), val = tensor<int32, []>(1)];
tensor<int32, [2]> var_33 = const()[name = tensor<string, []>("op_33"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_35 = const()[name = tensor<string, []>("op_35"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_1_pad_type_0 = const()[name = tensor<string, []>("input_1_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_1_pad_0 = const()[name = tensor<string, []>("input_1_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [128, 3, 3, 3]> encoder_conv_in_weight_to_fp16 = const()[name = tensor<string, []>("encoder_conv_in_weight_to_fp16"), val = tensor<fp16, [128, 3, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
tensor<fp16, [128]> encoder_conv_in_bias_to_fp16 = const()[name = tensor<string, []>("encoder_conv_in_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7040)))];
tensor<fp16, [1, 128, 384, 384]> input_1_cast_fp16 = conv(bias = encoder_conv_in_bias_to_fp16, dilations = var_35, groups = var_15, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = var_33, weight = encoder_conv_in_weight_to_fp16, x = x)[name = tensor<string, []>("input_1_cast_fp16")];
tensor<int32, [5]> reshape_0_shape_0 = const()[name = tensor<string, []>("reshape_0_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 384, 384])];
tensor<fp16, [1, 32, 4, 384, 384]> reshape_0_cast_fp16 = reshape(shape = reshape_0_shape_0, x = input_1_cast_fp16)[name = tensor<string, []>("reshape_0_cast_fp16")];
tensor<int32, [3]> reduce_mean_0_axes_0 = const()[name = tensor<string, []>("reduce_mean_0_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_0_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_0_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_0_cast_fp16 = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = reshape_0_cast_fp16)[name = tensor<string, []>("reduce_mean_0_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> sub_0_cast_fp16 = sub(x = reshape_0_cast_fp16, y = reduce_mean_0_cast_fp16)[name = tensor<string, []>("sub_0_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
tensor<int32, [3]> reduce_mean_2_axes_0 = const()[name = tensor<string, []>("reduce_mean_2_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_2_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_2_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_2_cast_fp16 = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = square_0_cast_fp16)[name = tensor<string, []>("reduce_mean_2_cast_fp16")];
tensor<fp16, []> add_0_y_0_to_fp16 = const()[name = tensor<string, []>("add_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_0_cast_fp16 = add(x = reduce_mean_2_cast_fp16, y = add_0_y_0_to_fp16)[name = tensor<string, []>("add_0_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_0_cast_fp16 = sqrt(x = add_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> real_div_0_cast_fp16 = real_div(x = sub_0_cast_fp16, y = sqrt_0_cast_fp16)[name = tensor<string, []>("real_div_0_cast_fp16")];
tensor<int32, [4]> reshape_1_shape_0 = const()[name = tensor<string, []>("reshape_1_shape_0"), val = tensor<int32, [4]>([1, 128, 384, 384])];
tensor<fp16, [1, 128, 384, 384]> reshape_1_cast_fp16 = reshape(shape = reshape_1_shape_0, x = real_div_0_cast_fp16)[name = tensor<string, []>("reshape_1_cast_fp16")];
tensor<fp16, [128]> add_1_mean_0_to_fp16 = const()[name = tensor<string, []>("add_1_mean_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7360)))];
tensor<fp16, [128]> add_1_variance_0_to_fp16 = const()[name = tensor<string, []>("add_1_variance_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7680)))];
tensor<fp16, [128]> add_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_1_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8000)))];
tensor<fp16, [128]> add_1_beta_0_to_fp16 = const()[name = tensor<string, []>("add_1_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8320)))];
tensor<fp16, []> add_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 128, 384, 384]> add_1_cast_fp16 = batch_norm(beta = add_1_beta_0_to_fp16, epsilon = add_1_epsilon_0_to_fp16, gamma = add_1_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_1_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
tensor<fp16, [1, 128, 384, 384]> hidden_states_1_cast_fp16 = silu(x = add_1_cast_fp16)[name = tensor<string, []>("hidden_states_1_cast_fp16")];
tensor<int32, [2]> var_54 = const()[name = tensor<string, []>("op_54"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_56 = const()[name = tensor<string, []>("op_56"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_5_pad_type_0 = const()[name = tensor<string, []>("input_5_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [128, 128, 3, 3]> encoder_down_blocks_0_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8640)))];
tensor<fp16, [128]> encoder_down_blocks_0_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(303616)))];
tensor<fp16, [1, 128, 384, 384]> input_5_cast_fp16 = conv(bias = encoder_down_blocks_0_resnets_0_conv1_bias_to_fp16, dilations = var_56, groups = var_15, pad = input_5_pad_0, pad_type = input_5_pad_type_0, strides = var_54, weight = encoder_down_blocks_0_resnets_0_conv1_weight_to_fp16, x = hidden_states_1_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
tensor<int32, [5]> reshape_4_shape_0 = const()[name = tensor<string, []>("reshape_4_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 384, 384])];
tensor<fp16, [1, 32, 4, 384, 384]> reshape_4_cast_fp16 = reshape(shape = reshape_4_shape_0, x = input_5_cast_fp16)[name = tensor<string, []>("reshape_4_cast_fp16")];
tensor<int32, [3]> reduce_mean_3_axes_0 = const()[name = tensor<string, []>("reduce_mean_3_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_3_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_3_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_3_cast_fp16 = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = reshape_4_cast_fp16)[name = tensor<string, []>("reduce_mean_3_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> sub_2_cast_fp16 = sub(x = reshape_4_cast_fp16, y = reduce_mean_3_cast_fp16)[name = tensor<string, []>("sub_2_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> square_1_cast_fp16 = square(x = sub_2_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
tensor<int32, [3]> reduce_mean_5_axes_0 = const()[name = tensor<string, []>("reduce_mean_5_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_5_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_5_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_5_cast_fp16 = reduce_mean(axes = reduce_mean_5_axes_0, keep_dims = reduce_mean_5_keep_dims_0, x = square_1_cast_fp16)[name = tensor<string, []>("reduce_mean_5_cast_fp16")];
tensor<fp16, []> add_2_y_0_to_fp16 = const()[name = tensor<string, []>("add_2_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_2_cast_fp16 = add(x = reduce_mean_5_cast_fp16, y = add_2_y_0_to_fp16)[name = tensor<string, []>("add_2_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_1_cast_fp16 = sqrt(x = add_2_cast_fp16)[name = tensor<string, []>("sqrt_1_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> real_div_1_cast_fp16 = real_div(x = sub_2_cast_fp16, y = sqrt_1_cast_fp16)[name = tensor<string, []>("real_div_1_cast_fp16")];
tensor<int32, [4]> reshape_5_shape_0 = const()[name = tensor<string, []>("reshape_5_shape_0"), val = tensor<int32, [4]>([1, 128, 384, 384])];
tensor<fp16, [1, 128, 384, 384]> reshape_5_cast_fp16 = reshape(shape = reshape_5_shape_0, x = real_div_1_cast_fp16)[name = tensor<string, []>("reshape_5_cast_fp16")];
tensor<fp16, [128]> add_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_3_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(303936)))];
tensor<fp16, [128]> add_3_beta_0_to_fp16 = const()[name = tensor<string, []>("add_3_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(304256)))];
tensor<fp16, []> add_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 128, 384, 384]> add_3_cast_fp16 = batch_norm(beta = add_3_beta_0_to_fp16, epsilon = add_3_epsilon_0_to_fp16, gamma = add_3_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_5_cast_fp16)[name = tensor<string, []>("add_3_cast_fp16")];
tensor<fp16, [1, 128, 384, 384]> input_9_cast_fp16 = silu(x = add_3_cast_fp16)[name = tensor<string, []>("input_9_cast_fp16")];
tensor<int32, [2]> var_66 = const()[name = tensor<string, []>("op_66"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_68 = const()[name = tensor<string, []>("op_68"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [128, 128, 3, 3]> encoder_down_blocks_0_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(304576)))];
tensor<fp16, [128]> encoder_down_blocks_0_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(599552)))];
tensor<fp16, [1, 128, 384, 384]> hidden_states_5_cast_fp16 = conv(bias = encoder_down_blocks_0_resnets_0_conv2_bias_to_fp16, dilations = var_68, groups = var_15, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_66, weight = encoder_down_blocks_0_resnets_0_conv2_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("hidden_states_5_cast_fp16")];
tensor<fp16, [1, 128, 384, 384]> var_71_cast_fp16 = add(x = input_1_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("op_71_cast_fp16")];
tensor<int32, [5]> reshape_8_shape_0 = const()[name = tensor<string, []>("reshape_8_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 384, 384])];
tensor<fp16, [1, 32, 4, 384, 384]> reshape_8_cast_fp16 = reshape(shape = reshape_8_shape_0, x = var_71_cast_fp16)[name = tensor<string, []>("reshape_8_cast_fp16")];
tensor<int32, [3]> reduce_mean_6_axes_0 = const()[name = tensor<string, []>("reduce_mean_6_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_6_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_6_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_6_cast_fp16 = reduce_mean(axes = reduce_mean_6_axes_0, keep_dims = reduce_mean_6_keep_dims_0, x = reshape_8_cast_fp16)[name = tensor<string, []>("reduce_mean_6_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> sub_4_cast_fp16 = sub(x = reshape_8_cast_fp16, y = reduce_mean_6_cast_fp16)[name = tensor<string, []>("sub_4_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> square_2_cast_fp16 = square(x = sub_4_cast_fp16)[name = tensor<string, []>("square_2_cast_fp16")];
tensor<int32, [3]> reduce_mean_8_axes_0 = const()[name = tensor<string, []>("reduce_mean_8_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_8_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_8_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_8_cast_fp16 = reduce_mean(axes = reduce_mean_8_axes_0, keep_dims = reduce_mean_8_keep_dims_0, x = square_2_cast_fp16)[name = tensor<string, []>("reduce_mean_8_cast_fp16")];
tensor<fp16, []> add_4_y_0_to_fp16 = const()[name = tensor<string, []>("add_4_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_4_cast_fp16 = add(x = reduce_mean_8_cast_fp16, y = add_4_y_0_to_fp16)[name = tensor<string, []>("add_4_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_2_cast_fp16 = sqrt(x = add_4_cast_fp16)[name = tensor<string, []>("sqrt_2_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> real_div_2_cast_fp16 = real_div(x = sub_4_cast_fp16, y = sqrt_2_cast_fp16)[name = tensor<string, []>("real_div_2_cast_fp16")];
tensor<int32, [4]> reshape_9_shape_0 = const()[name = tensor<string, []>("reshape_9_shape_0"), val = tensor<int32, [4]>([1, 128, 384, 384])];
tensor<fp16, [1, 128, 384, 384]> reshape_9_cast_fp16 = reshape(shape = reshape_9_shape_0, x = real_div_2_cast_fp16)[name = tensor<string, []>("reshape_9_cast_fp16")];
tensor<fp16, [128]> add_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_5_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(599872)))];
tensor<fp16, [128]> add_5_beta_0_to_fp16 = const()[name = tensor<string, []>("add_5_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(600192)))];
tensor<fp16, []> add_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 128, 384, 384]> add_5_cast_fp16 = batch_norm(beta = add_5_beta_0_to_fp16, epsilon = add_5_epsilon_0_to_fp16, gamma = add_5_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_9_cast_fp16)[name = tensor<string, []>("add_5_cast_fp16")];
tensor<fp16, [1, 128, 384, 384]> hidden_states_7_cast_fp16 = silu(x = add_5_cast_fp16)[name = tensor<string, []>("hidden_states_7_cast_fp16")];
tensor<int32, [2]> var_84 = const()[name = tensor<string, []>("op_84"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_86 = const()[name = tensor<string, []>("op_86"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_15_pad_type_0 = const()[name = tensor<string, []>("input_15_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_15_pad_0 = const()[name = tensor<string, []>("input_15_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [128, 128, 3, 3]> encoder_down_blocks_0_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(600512)))];
tensor<fp16, [128]> encoder_down_blocks_0_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(895488)))];
tensor<fp16, [1, 128, 384, 384]> input_15_cast_fp16 = conv(bias = encoder_down_blocks_0_resnets_1_conv1_bias_to_fp16, dilations = var_86, groups = var_15, pad = input_15_pad_0, pad_type = input_15_pad_type_0, strides = var_84, weight = encoder_down_blocks_0_resnets_1_conv1_weight_to_fp16, x = hidden_states_7_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
tensor<int32, [5]> reshape_12_shape_0 = const()[name = tensor<string, []>("reshape_12_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 384, 384])];
tensor<fp16, [1, 32, 4, 384, 384]> reshape_12_cast_fp16 = reshape(shape = reshape_12_shape_0, x = input_15_cast_fp16)[name = tensor<string, []>("reshape_12_cast_fp16")];
tensor<int32, [3]> reduce_mean_9_axes_0 = const()[name = tensor<string, []>("reduce_mean_9_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_9_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_9_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_9_cast_fp16 = reduce_mean(axes = reduce_mean_9_axes_0, keep_dims = reduce_mean_9_keep_dims_0, x = reshape_12_cast_fp16)[name = tensor<string, []>("reduce_mean_9_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> sub_6_cast_fp16 = sub(x = reshape_12_cast_fp16, y = reduce_mean_9_cast_fp16)[name = tensor<string, []>("sub_6_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> square_3_cast_fp16 = square(x = sub_6_cast_fp16)[name = tensor<string, []>("square_3_cast_fp16")];
tensor<int32, [3]> reduce_mean_11_axes_0 = const()[name = tensor<string, []>("reduce_mean_11_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_11_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_11_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_11_cast_fp16 = reduce_mean(axes = reduce_mean_11_axes_0, keep_dims = reduce_mean_11_keep_dims_0, x = square_3_cast_fp16)[name = tensor<string, []>("reduce_mean_11_cast_fp16")];
tensor<fp16, []> add_6_y_0_to_fp16 = const()[name = tensor<string, []>("add_6_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_6_cast_fp16 = add(x = reduce_mean_11_cast_fp16, y = add_6_y_0_to_fp16)[name = tensor<string, []>("add_6_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_3_cast_fp16 = sqrt(x = add_6_cast_fp16)[name = tensor<string, []>("sqrt_3_cast_fp16")];
tensor<fp16, [1, 32, 4, 384, 384]> real_div_3_cast_fp16 = real_div(x = sub_6_cast_fp16, y = sqrt_3_cast_fp16)[name = tensor<string, []>("real_div_3_cast_fp16")];
tensor<int32, [4]> reshape_13_shape_0 = const()[name = tensor<string, []>("reshape_13_shape_0"), val = tensor<int32, [4]>([1, 128, 384, 384])];
tensor<fp16, [1, 128, 384, 384]> reshape_13_cast_fp16 = reshape(shape = reshape_13_shape_0, x = real_div_3_cast_fp16)[name = tensor<string, []>("reshape_13_cast_fp16")];
tensor<fp16, [128]> add_7_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_7_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(895808)))];
tensor<fp16, [128]> add_7_beta_0_to_fp16 = const()[name = tensor<string, []>("add_7_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(896128)))];
tensor<fp16, []> add_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 128, 384, 384]> add_7_cast_fp16 = batch_norm(beta = add_7_beta_0_to_fp16, epsilon = add_7_epsilon_0_to_fp16, gamma = add_7_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_13_cast_fp16)[name = tensor<string, []>("add_7_cast_fp16")];
tensor<fp16, [1, 128, 384, 384]> input_19_cast_fp16 = silu(x = add_7_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
tensor<int32, [2]> var_96 = const()[name = tensor<string, []>("op_96"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_98 = const()[name = tensor<string, []>("op_98"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_11_pad_type_0 = const()[name = tensor<string, []>("hidden_states_11_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_11_pad_0 = const()[name = tensor<string, []>("hidden_states_11_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [128, 128, 3, 3]> encoder_down_blocks_0_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(896448)))];
tensor<fp16, [128]> encoder_down_blocks_0_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1191424)))];
tensor<fp16, [1, 128, 384, 384]> hidden_states_11_cast_fp16 = conv(bias = encoder_down_blocks_0_resnets_1_conv2_bias_to_fp16, dilations = var_98, groups = var_15, pad = hidden_states_11_pad_0, pad_type = hidden_states_11_pad_type_0, strides = var_96, weight = encoder_down_blocks_0_resnets_1_conv2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("hidden_states_11_cast_fp16")];
tensor<fp16, [1, 128, 384, 384]> var_101_cast_fp16 = add(x = var_71_cast_fp16, y = hidden_states_11_cast_fp16)[name = tensor<string, []>("op_101_cast_fp16")];
tensor<int32, [8]> hidden_states_15_pad_0 = const()[name = tensor<string, []>("hidden_states_15_pad_0"), val = tensor<int32, [8]>([0, 0, 0, 0, 0, 1, 0, 1])];
tensor<string, []> hidden_states_15_mode_0 = const()[name = tensor<string, []>("hidden_states_15_mode_0"), val = tensor<string, []>("constant")];
tensor<fp16, []> hidden_states_15_constant_val_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_15_constant_val_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
tensor<fp16, [1, 128, 385, 385]> hidden_states_15_cast_fp16 = pad(constant_val = hidden_states_15_constant_val_0_to_fp16, mode = hidden_states_15_mode_0, pad = hidden_states_15_pad_0, x = var_101_cast_fp16)[name = tensor<string, []>("hidden_states_15_cast_fp16")];
tensor<int32, [2]> var_109 = const()[name = tensor<string, []>("op_109"), val = tensor<int32, [2]>([2, 2])];
tensor<int32, [2]> var_111 = const()[name = tensor<string, []>("op_111"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_21_pad_type_0 = const()[name = tensor<string, []>("input_21_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_21_pad_0 = const()[name = tensor<string, []>("input_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<fp16, [128, 128, 3, 3]> encoder_down_blocks_0_downsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_downsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1191744)))];
tensor<fp16, [128]> encoder_down_blocks_0_downsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_0_downsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1486720)))];
tensor<fp16, [1, 128, 192, 192]> input_21_cast_fp16 = conv(bias = encoder_down_blocks_0_downsamplers_0_conv_bias_to_fp16, dilations = var_111, groups = var_15, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = var_109, weight = encoder_down_blocks_0_downsamplers_0_conv_weight_to_fp16, x = hidden_states_15_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
tensor<int32, [5]> reshape_16_shape_0 = const()[name = tensor<string, []>("reshape_16_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 192, 192])];
tensor<fp16, [1, 32, 4, 192, 192]> reshape_16_cast_fp16 = reshape(shape = reshape_16_shape_0, x = input_21_cast_fp16)[name = tensor<string, []>("reshape_16_cast_fp16")];
tensor<int32, [3]> reduce_mean_12_axes_0 = const()[name = tensor<string, []>("reduce_mean_12_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_12_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_12_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_12_cast_fp16 = reduce_mean(axes = reduce_mean_12_axes_0, keep_dims = reduce_mean_12_keep_dims_0, x = reshape_16_cast_fp16)[name = tensor<string, []>("reduce_mean_12_cast_fp16")];
tensor<fp16, [1, 32, 4, 192, 192]> sub_8_cast_fp16 = sub(x = reshape_16_cast_fp16, y = reduce_mean_12_cast_fp16)[name = tensor<string, []>("sub_8_cast_fp16")];
tensor<fp16, [1, 32, 4, 192, 192]> square_4_cast_fp16 = square(x = sub_8_cast_fp16)[name = tensor<string, []>("square_4_cast_fp16")];
tensor<int32, [3]> reduce_mean_14_axes_0 = const()[name = tensor<string, []>("reduce_mean_14_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_14_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_14_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_14_cast_fp16 = reduce_mean(axes = reduce_mean_14_axes_0, keep_dims = reduce_mean_14_keep_dims_0, x = square_4_cast_fp16)[name = tensor<string, []>("reduce_mean_14_cast_fp16")];
tensor<fp16, []> add_8_y_0_to_fp16 = const()[name = tensor<string, []>("add_8_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_8_cast_fp16 = add(x = reduce_mean_14_cast_fp16, y = add_8_y_0_to_fp16)[name = tensor<string, []>("add_8_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_4_cast_fp16 = sqrt(x = add_8_cast_fp16)[name = tensor<string, []>("sqrt_4_cast_fp16")];
tensor<fp16, [1, 32, 4, 192, 192]> real_div_4_cast_fp16 = real_div(x = sub_8_cast_fp16, y = sqrt_4_cast_fp16)[name = tensor<string, []>("real_div_4_cast_fp16")];
tensor<int32, [4]> reshape_17_shape_0 = const()[name = tensor<string, []>("reshape_17_shape_0"), val = tensor<int32, [4]>([1, 128, 192, 192])];
tensor<fp16, [1, 128, 192, 192]> reshape_17_cast_fp16 = reshape(shape = reshape_17_shape_0, x = real_div_4_cast_fp16)[name = tensor<string, []>("reshape_17_cast_fp16")];
tensor<fp16, [128]> add_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_9_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1487040)))];
tensor<fp16, [128]> add_9_beta_0_to_fp16 = const()[name = tensor<string, []>("add_9_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1487360)))];
tensor<fp16, []> add_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 128, 192, 192]> add_9_cast_fp16 = batch_norm(beta = add_9_beta_0_to_fp16, epsilon = add_9_epsilon_0_to_fp16, gamma = add_9_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_17_cast_fp16)[name = tensor<string, []>("add_9_cast_fp16")];
tensor<fp16, [1, 128, 192, 192]> hidden_states_17_cast_fp16 = silu(x = add_9_cast_fp16)[name = tensor<string, []>("hidden_states_17_cast_fp16")];
tensor<int32, [2]> var_131 = const()[name = tensor<string, []>("op_131"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_133 = const()[name = tensor<string, []>("op_133"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_25_pad_type_0 = const()[name = tensor<string, []>("input_25_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_25_pad_0 = const()[name = tensor<string, []>("input_25_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [256, 128, 3, 3]> encoder_down_blocks_1_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [256, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1487680)))];
tensor<fp16, [256]> encoder_down_blocks_1_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2077568)))];
tensor<fp16, [1, 256, 192, 192]> input_25_cast_fp16 = conv(bias = encoder_down_blocks_1_resnets_0_conv1_bias_to_fp16, dilations = var_133, groups = var_15, pad = input_25_pad_0, pad_type = input_25_pad_type_0, strides = var_131, weight = encoder_down_blocks_1_resnets_0_conv1_weight_to_fp16, x = hidden_states_17_cast_fp16)[name = tensor<string, []>("input_25_cast_fp16")];
tensor<int32, [5]> reshape_20_shape_0 = const()[name = tensor<string, []>("reshape_20_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 192, 192])];
tensor<fp16, [1, 32, 8, 192, 192]> reshape_20_cast_fp16 = reshape(shape = reshape_20_shape_0, x = input_25_cast_fp16)[name = tensor<string, []>("reshape_20_cast_fp16")];
tensor<int32, [3]> reduce_mean_15_axes_0 = const()[name = tensor<string, []>("reduce_mean_15_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_15_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_15_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_15_cast_fp16 = reduce_mean(axes = reduce_mean_15_axes_0, keep_dims = reduce_mean_15_keep_dims_0, x = reshape_20_cast_fp16)[name = tensor<string, []>("reduce_mean_15_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> sub_10_cast_fp16 = sub(x = reshape_20_cast_fp16, y = reduce_mean_15_cast_fp16)[name = tensor<string, []>("sub_10_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> square_5_cast_fp16 = square(x = sub_10_cast_fp16)[name = tensor<string, []>("square_5_cast_fp16")];
tensor<int32, [3]> reduce_mean_17_axes_0 = const()[name = tensor<string, []>("reduce_mean_17_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_17_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_17_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_17_cast_fp16 = reduce_mean(axes = reduce_mean_17_axes_0, keep_dims = reduce_mean_17_keep_dims_0, x = square_5_cast_fp16)[name = tensor<string, []>("reduce_mean_17_cast_fp16")];
tensor<fp16, []> add_10_y_0_to_fp16 = const()[name = tensor<string, []>("add_10_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_10_cast_fp16 = add(x = reduce_mean_17_cast_fp16, y = add_10_y_0_to_fp16)[name = tensor<string, []>("add_10_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_5_cast_fp16 = sqrt(x = add_10_cast_fp16)[name = tensor<string, []>("sqrt_5_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> real_div_5_cast_fp16 = real_div(x = sub_10_cast_fp16, y = sqrt_5_cast_fp16)[name = tensor<string, []>("real_div_5_cast_fp16")];
tensor<int32, [4]> reshape_21_shape_0 = const()[name = tensor<string, []>("reshape_21_shape_0"), val = tensor<int32, [4]>([1, 256, 192, 192])];
tensor<fp16, [1, 256, 192, 192]> reshape_21_cast_fp16 = reshape(shape = reshape_21_shape_0, x = real_div_5_cast_fp16)[name = tensor<string, []>("reshape_21_cast_fp16")];
tensor<fp16, [256]> add_11_mean_0_to_fp16 = const()[name = tensor<string, []>("add_11_mean_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2078144)))];
tensor<fp16, [256]> add_11_variance_0_to_fp16 = const()[name = tensor<string, []>("add_11_variance_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2078720)))];
tensor<fp16, [256]> add_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_11_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2079296)))];
tensor<fp16, [256]> add_11_beta_0_to_fp16 = const()[name = tensor<string, []>("add_11_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2079872)))];
tensor<fp16, []> add_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 256, 192, 192]> add_11_cast_fp16 = batch_norm(beta = add_11_beta_0_to_fp16, epsilon = add_11_epsilon_0_to_fp16, gamma = add_11_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_21_cast_fp16)[name = tensor<string, []>("add_11_cast_fp16")];
tensor<fp16, [1, 256, 192, 192]> input_29_cast_fp16 = silu(x = add_11_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
tensor<int32, [2]> var_143 = const()[name = tensor<string, []>("op_143"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_145 = const()[name = tensor<string, []>("op_145"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_21_pad_type_0 = const()[name = tensor<string, []>("hidden_states_21_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_21_pad_0 = const()[name = tensor<string, []>("hidden_states_21_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [256, 256, 3, 3]> encoder_down_blocks_1_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2080448)))];
tensor<fp16, [256]> encoder_down_blocks_1_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3260160)))];
tensor<fp16, [1, 256, 192, 192]> hidden_states_21_cast_fp16 = conv(bias = encoder_down_blocks_1_resnets_0_conv2_bias_to_fp16, dilations = var_145, groups = var_15, pad = hidden_states_21_pad_0, pad_type = hidden_states_21_pad_type_0, strides = var_143, weight = encoder_down_blocks_1_resnets_0_conv2_weight_to_fp16, x = input_29_cast_fp16)[name = tensor<string, []>("hidden_states_21_cast_fp16")];
tensor<int32, [2]> var_150 = const()[name = tensor<string, []>("op_150"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_152 = const()[name = tensor<string, []>("op_152"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_tensor_1_pad_type_0 = const()[name = tensor<string, []>("input_tensor_1_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_tensor_1_pad_0 = const()[name = tensor<string, []>("input_tensor_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<fp16, [256, 128, 1, 1]> encoder_down_blocks_1_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor<fp16, [256, 128, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3260736)))];
tensor<fp16, [256]> encoder_down_blocks_1_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3326336)))];
tensor<fp16, [1, 256, 192, 192]> input_tensor_1_cast_fp16 = conv(bias = encoder_down_blocks_1_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_152, groups = var_15, pad = input_tensor_1_pad_0, pad_type = input_tensor_1_pad_type_0, strides = var_150, weight = encoder_down_blocks_1_resnets_0_conv_shortcut_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("input_tensor_1_cast_fp16")];
tensor<fp16, [1, 256, 192, 192]> var_155_cast_fp16 = add(x = input_tensor_1_cast_fp16, y = hidden_states_21_cast_fp16)[name = tensor<string, []>("op_155_cast_fp16")];
tensor<int32, [5]> reshape_24_shape_0 = const()[name = tensor<string, []>("reshape_24_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 192, 192])];
tensor<fp16, [1, 32, 8, 192, 192]> reshape_24_cast_fp16 = reshape(shape = reshape_24_shape_0, x = var_155_cast_fp16)[name = tensor<string, []>("reshape_24_cast_fp16")];
tensor<int32, [3]> reduce_mean_18_axes_0 = const()[name = tensor<string, []>("reduce_mean_18_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_18_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_18_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_18_cast_fp16 = reduce_mean(axes = reduce_mean_18_axes_0, keep_dims = reduce_mean_18_keep_dims_0, x = reshape_24_cast_fp16)[name = tensor<string, []>("reduce_mean_18_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> sub_12_cast_fp16 = sub(x = reshape_24_cast_fp16, y = reduce_mean_18_cast_fp16)[name = tensor<string, []>("sub_12_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> square_6_cast_fp16 = square(x = sub_12_cast_fp16)[name = tensor<string, []>("square_6_cast_fp16")];
tensor<int32, [3]> reduce_mean_20_axes_0 = const()[name = tensor<string, []>("reduce_mean_20_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_20_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_20_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_20_cast_fp16 = reduce_mean(axes = reduce_mean_20_axes_0, keep_dims = reduce_mean_20_keep_dims_0, x = square_6_cast_fp16)[name = tensor<string, []>("reduce_mean_20_cast_fp16")];
tensor<fp16, []> add_12_y_0_to_fp16 = const()[name = tensor<string, []>("add_12_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_12_cast_fp16 = add(x = reduce_mean_20_cast_fp16, y = add_12_y_0_to_fp16)[name = tensor<string, []>("add_12_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_6_cast_fp16 = sqrt(x = add_12_cast_fp16)[name = tensor<string, []>("sqrt_6_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> real_div_6_cast_fp16 = real_div(x = sub_12_cast_fp16, y = sqrt_6_cast_fp16)[name = tensor<string, []>("real_div_6_cast_fp16")];
tensor<int32, [4]> reshape_25_shape_0 = const()[name = tensor<string, []>("reshape_25_shape_0"), val = tensor<int32, [4]>([1, 256, 192, 192])];
tensor<fp16, [1, 256, 192, 192]> reshape_25_cast_fp16 = reshape(shape = reshape_25_shape_0, x = real_div_6_cast_fp16)[name = tensor<string, []>("reshape_25_cast_fp16")];
tensor<fp16, [256]> add_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_13_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3326912)))];
tensor<fp16, [256]> add_13_beta_0_to_fp16 = const()[name = tensor<string, []>("add_13_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3327488)))];
tensor<fp16, []> add_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 256, 192, 192]> add_13_cast_fp16 = batch_norm(beta = add_13_beta_0_to_fp16, epsilon = add_13_epsilon_0_to_fp16, gamma = add_13_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_25_cast_fp16)[name = tensor<string, []>("add_13_cast_fp16")];
tensor<fp16, [1, 256, 192, 192]> hidden_states_23_cast_fp16 = silu(x = add_13_cast_fp16)[name = tensor<string, []>("hidden_states_23_cast_fp16")];
tensor<int32, [2]> var_168 = const()[name = tensor<string, []>("op_168"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_170 = const()[name = tensor<string, []>("op_170"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_35_pad_type_0 = const()[name = tensor<string, []>("input_35_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_35_pad_0 = const()[name = tensor<string, []>("input_35_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [256, 256, 3, 3]> encoder_down_blocks_1_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3328064)))];
tensor<fp16, [256]> encoder_down_blocks_1_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4507776)))];
tensor<fp16, [1, 256, 192, 192]> input_35_cast_fp16 = conv(bias = encoder_down_blocks_1_resnets_1_conv1_bias_to_fp16, dilations = var_170, groups = var_15, pad = input_35_pad_0, pad_type = input_35_pad_type_0, strides = var_168, weight = encoder_down_blocks_1_resnets_1_conv1_weight_to_fp16, x = hidden_states_23_cast_fp16)[name = tensor<string, []>("input_35_cast_fp16")];
tensor<int32, [5]> reshape_28_shape_0 = const()[name = tensor<string, []>("reshape_28_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 192, 192])];
tensor<fp16, [1, 32, 8, 192, 192]> reshape_28_cast_fp16 = reshape(shape = reshape_28_shape_0, x = input_35_cast_fp16)[name = tensor<string, []>("reshape_28_cast_fp16")];
tensor<int32, [3]> reduce_mean_21_axes_0 = const()[name = tensor<string, []>("reduce_mean_21_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_21_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_21_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_21_cast_fp16 = reduce_mean(axes = reduce_mean_21_axes_0, keep_dims = reduce_mean_21_keep_dims_0, x = reshape_28_cast_fp16)[name = tensor<string, []>("reduce_mean_21_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> sub_14_cast_fp16 = sub(x = reshape_28_cast_fp16, y = reduce_mean_21_cast_fp16)[name = tensor<string, []>("sub_14_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> square_7_cast_fp16 = square(x = sub_14_cast_fp16)[name = tensor<string, []>("square_7_cast_fp16")];
tensor<int32, [3]> reduce_mean_23_axes_0 = const()[name = tensor<string, []>("reduce_mean_23_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_23_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_23_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_23_cast_fp16 = reduce_mean(axes = reduce_mean_23_axes_0, keep_dims = reduce_mean_23_keep_dims_0, x = square_7_cast_fp16)[name = tensor<string, []>("reduce_mean_23_cast_fp16")];
tensor<fp16, []> add_14_y_0_to_fp16 = const()[name = tensor<string, []>("add_14_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_14_cast_fp16 = add(x = reduce_mean_23_cast_fp16, y = add_14_y_0_to_fp16)[name = tensor<string, []>("add_14_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_7_cast_fp16 = sqrt(x = add_14_cast_fp16)[name = tensor<string, []>("sqrt_7_cast_fp16")];
tensor<fp16, [1, 32, 8, 192, 192]> real_div_7_cast_fp16 = real_div(x = sub_14_cast_fp16, y = sqrt_7_cast_fp16)[name = tensor<string, []>("real_div_7_cast_fp16")];
tensor<int32, [4]> reshape_29_shape_0 = const()[name = tensor<string, []>("reshape_29_shape_0"), val = tensor<int32, [4]>([1, 256, 192, 192])];
tensor<fp16, [1, 256, 192, 192]> reshape_29_cast_fp16 = reshape(shape = reshape_29_shape_0, x = real_div_7_cast_fp16)[name = tensor<string, []>("reshape_29_cast_fp16")];
tensor<fp16, [256]> add_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_15_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4508352)))];
tensor<fp16, [256]> add_15_beta_0_to_fp16 = const()[name = tensor<string, []>("add_15_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4508928)))];
tensor<fp16, []> add_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 256, 192, 192]> add_15_cast_fp16 = batch_norm(beta = add_15_beta_0_to_fp16, epsilon = add_15_epsilon_0_to_fp16, gamma = add_15_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_29_cast_fp16)[name = tensor<string, []>("add_15_cast_fp16")];
tensor<fp16, [1, 256, 192, 192]> input_39_cast_fp16 = silu(x = add_15_cast_fp16)[name = tensor<string, []>("input_39_cast_fp16")];
tensor<int32, [2]> var_180 = const()[name = tensor<string, []>("op_180"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_182 = const()[name = tensor<string, []>("op_182"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_27_pad_type_0 = const()[name = tensor<string, []>("hidden_states_27_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_27_pad_0 = const()[name = tensor<string, []>("hidden_states_27_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [256, 256, 3, 3]> encoder_down_blocks_1_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4509504)))];
tensor<fp16, [256]> encoder_down_blocks_1_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5689216)))];
tensor<fp16, [1, 256, 192, 192]> hidden_states_27_cast_fp16 = conv(bias = encoder_down_blocks_1_resnets_1_conv2_bias_to_fp16, dilations = var_182, groups = var_15, pad = hidden_states_27_pad_0, pad_type = hidden_states_27_pad_type_0, strides = var_180, weight = encoder_down_blocks_1_resnets_1_conv2_weight_to_fp16, x = input_39_cast_fp16)[name = tensor<string, []>("hidden_states_27_cast_fp16")];
tensor<fp16, [1, 256, 192, 192]> var_185_cast_fp16 = add(x = var_155_cast_fp16, y = hidden_states_27_cast_fp16)[name = tensor<string, []>("op_185_cast_fp16")];
tensor<int32, [8]> hidden_states_31_pad_0 = const()[name = tensor<string, []>("hidden_states_31_pad_0"), val = tensor<int32, [8]>([0, 0, 0, 0, 0, 1, 0, 1])];
tensor<string, []> hidden_states_31_mode_0 = const()[name = tensor<string, []>("hidden_states_31_mode_0"), val = tensor<string, []>("constant")];
tensor<fp16, []> hidden_states_31_constant_val_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_31_constant_val_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
tensor<fp16, [1, 256, 193, 193]> hidden_states_31_cast_fp16 = pad(constant_val = hidden_states_31_constant_val_0_to_fp16, mode = hidden_states_31_mode_0, pad = hidden_states_31_pad_0, x = var_185_cast_fp16)[name = tensor<string, []>("hidden_states_31_cast_fp16")];
tensor<int32, [2]> var_193 = const()[name = tensor<string, []>("op_193"), val = tensor<int32, [2]>([2, 2])];
tensor<int32, [2]> var_195 = const()[name = tensor<string, []>("op_195"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_41_pad_type_0 = const()[name = tensor<string, []>("input_41_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_41_pad_0 = const()[name = tensor<string, []>("input_41_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<fp16, [256, 256, 3, 3]> encoder_down_blocks_1_downsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_downsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5689792)))];
tensor<fp16, [256]> encoder_down_blocks_1_downsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_1_downsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6869504)))];
tensor<fp16, [1, 256, 96, 96]> input_41_cast_fp16 = conv(bias = encoder_down_blocks_1_downsamplers_0_conv_bias_to_fp16, dilations = var_195, groups = var_15, pad = input_41_pad_0, pad_type = input_41_pad_type_0, strides = var_193, weight = encoder_down_blocks_1_downsamplers_0_conv_weight_to_fp16, x = hidden_states_31_cast_fp16)[name = tensor<string, []>("input_41_cast_fp16")];
tensor<int32, [5]> reshape_32_shape_0 = const()[name = tensor<string, []>("reshape_32_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 96, 96])];
tensor<fp16, [1, 32, 8, 96, 96]> reshape_32_cast_fp16 = reshape(shape = reshape_32_shape_0, x = input_41_cast_fp16)[name = tensor<string, []>("reshape_32_cast_fp16")];
tensor<int32, [3]> reduce_mean_24_axes_0 = const()[name = tensor<string, []>("reduce_mean_24_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_24_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_24_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_24_cast_fp16 = reduce_mean(axes = reduce_mean_24_axes_0, keep_dims = reduce_mean_24_keep_dims_0, x = reshape_32_cast_fp16)[name = tensor<string, []>("reduce_mean_24_cast_fp16")];
tensor<fp16, [1, 32, 8, 96, 96]> sub_16_cast_fp16 = sub(x = reshape_32_cast_fp16, y = reduce_mean_24_cast_fp16)[name = tensor<string, []>("sub_16_cast_fp16")];
tensor<fp16, [1, 32, 8, 96, 96]> square_8_cast_fp16 = square(x = sub_16_cast_fp16)[name = tensor<string, []>("square_8_cast_fp16")];
tensor<int32, [3]> reduce_mean_26_axes_0 = const()[name = tensor<string, []>("reduce_mean_26_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_26_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_26_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_26_cast_fp16 = reduce_mean(axes = reduce_mean_26_axes_0, keep_dims = reduce_mean_26_keep_dims_0, x = square_8_cast_fp16)[name = tensor<string, []>("reduce_mean_26_cast_fp16")];
tensor<fp16, []> add_16_y_0_to_fp16 = const()[name = tensor<string, []>("add_16_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_16_cast_fp16 = add(x = reduce_mean_26_cast_fp16, y = add_16_y_0_to_fp16)[name = tensor<string, []>("add_16_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_8_cast_fp16 = sqrt(x = add_16_cast_fp16)[name = tensor<string, []>("sqrt_8_cast_fp16")];
tensor<fp16, [1, 32, 8, 96, 96]> real_div_8_cast_fp16 = real_div(x = sub_16_cast_fp16, y = sqrt_8_cast_fp16)[name = tensor<string, []>("real_div_8_cast_fp16")];
tensor<int32, [4]> reshape_33_shape_0 = const()[name = tensor<string, []>("reshape_33_shape_0"), val = tensor<int32, [4]>([1, 256, 96, 96])];
tensor<fp16, [1, 256, 96, 96]> reshape_33_cast_fp16 = reshape(shape = reshape_33_shape_0, x = real_div_8_cast_fp16)[name = tensor<string, []>("reshape_33_cast_fp16")];
tensor<fp16, [256]> add_17_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_17_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6870080)))];
tensor<fp16, [256]> add_17_beta_0_to_fp16 = const()[name = tensor<string, []>("add_17_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6870656)))];
tensor<fp16, []> add_17_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_17_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 256, 96, 96]> add_17_cast_fp16 = batch_norm(beta = add_17_beta_0_to_fp16, epsilon = add_17_epsilon_0_to_fp16, gamma = add_17_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_33_cast_fp16)[name = tensor<string, []>("add_17_cast_fp16")];
tensor<fp16, [1, 256, 96, 96]> hidden_states_33_cast_fp16 = silu(x = add_17_cast_fp16)[name = tensor<string, []>("hidden_states_33_cast_fp16")];
tensor<int32, [2]> var_215 = const()[name = tensor<string, []>("op_215"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_217 = const()[name = tensor<string, []>("op_217"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_45_pad_type_0 = const()[name = tensor<string, []>("input_45_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_45_pad_0 = const()[name = tensor<string, []>("input_45_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 256, 3, 3]> encoder_down_blocks_2_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6871232)))];
tensor<fp16, [512]> encoder_down_blocks_2_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9230592)))];
tensor<fp16, [1, 512, 96, 96]> input_45_cast_fp16 = conv(bias = encoder_down_blocks_2_resnets_0_conv1_bias_to_fp16, dilations = var_217, groups = var_15, pad = input_45_pad_0, pad_type = input_45_pad_type_0, strides = var_215, weight = encoder_down_blocks_2_resnets_0_conv1_weight_to_fp16, x = hidden_states_33_cast_fp16)[name = tensor<string, []>("input_45_cast_fp16")];
tensor<int32, [5]> reshape_36_shape_0 = const()[name = tensor<string, []>("reshape_36_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 96, 96])];
tensor<fp16, [1, 32, 16, 96, 96]> reshape_36_cast_fp16 = reshape(shape = reshape_36_shape_0, x = input_45_cast_fp16)[name = tensor<string, []>("reshape_36_cast_fp16")];
tensor<int32, [3]> reduce_mean_27_axes_0 = const()[name = tensor<string, []>("reduce_mean_27_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_27_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_27_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_27_cast_fp16 = reduce_mean(axes = reduce_mean_27_axes_0, keep_dims = reduce_mean_27_keep_dims_0, x = reshape_36_cast_fp16)[name = tensor<string, []>("reduce_mean_27_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> sub_18_cast_fp16 = sub(x = reshape_36_cast_fp16, y = reduce_mean_27_cast_fp16)[name = tensor<string, []>("sub_18_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> square_9_cast_fp16 = square(x = sub_18_cast_fp16)[name = tensor<string, []>("square_9_cast_fp16")];
tensor<int32, [3]> reduce_mean_29_axes_0 = const()[name = tensor<string, []>("reduce_mean_29_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_29_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_29_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_29_cast_fp16 = reduce_mean(axes = reduce_mean_29_axes_0, keep_dims = reduce_mean_29_keep_dims_0, x = square_9_cast_fp16)[name = tensor<string, []>("reduce_mean_29_cast_fp16")];
tensor<fp16, []> add_18_y_0_to_fp16 = const()[name = tensor<string, []>("add_18_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_18_cast_fp16 = add(x = reduce_mean_29_cast_fp16, y = add_18_y_0_to_fp16)[name = tensor<string, []>("add_18_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_9_cast_fp16 = sqrt(x = add_18_cast_fp16)[name = tensor<string, []>("sqrt_9_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> real_div_9_cast_fp16 = real_div(x = sub_18_cast_fp16, y = sqrt_9_cast_fp16)[name = tensor<string, []>("real_div_9_cast_fp16")];
tensor<int32, [4]> reshape_37_shape_0 = const()[name = tensor<string, []>("reshape_37_shape_0"), val = tensor<int32, [4]>([1, 512, 96, 96])];
tensor<fp16, [1, 512, 96, 96]> reshape_37_cast_fp16 = reshape(shape = reshape_37_shape_0, x = real_div_9_cast_fp16)[name = tensor<string, []>("reshape_37_cast_fp16")];
tensor<fp16, [512]> add_19_mean_0_to_fp16 = const()[name = tensor<string, []>("add_19_mean_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9231680)))];
tensor<fp16, [512]> add_19_variance_0_to_fp16 = const()[name = tensor<string, []>("add_19_variance_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9232768)))];
tensor<fp16, [512]> add_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_19_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9233856)))];
tensor<fp16, [512]> add_19_beta_0_to_fp16 = const()[name = tensor<string, []>("add_19_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9234944)))];
tensor<fp16, []> add_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 96, 96]> add_19_cast_fp16 = batch_norm(beta = add_19_beta_0_to_fp16, epsilon = add_19_epsilon_0_to_fp16, gamma = add_19_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_37_cast_fp16)[name = tensor<string, []>("add_19_cast_fp16")];
tensor<fp16, [1, 512, 96, 96]> input_49_cast_fp16 = silu(x = add_19_cast_fp16)[name = tensor<string, []>("input_49_cast_fp16")];
tensor<int32, [2]> var_227 = const()[name = tensor<string, []>("op_227"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_229 = const()[name = tensor<string, []>("op_229"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_37_pad_type_0 = const()[name = tensor<string, []>("hidden_states_37_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_37_pad_0 = const()[name = tensor<string, []>("hidden_states_37_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_2_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9236032)))];
tensor<fp16, [512]> encoder_down_blocks_2_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13954688)))];
tensor<fp16, [1, 512, 96, 96]> hidden_states_37_cast_fp16 = conv(bias = encoder_down_blocks_2_resnets_0_conv2_bias_to_fp16, dilations = var_229, groups = var_15, pad = hidden_states_37_pad_0, pad_type = hidden_states_37_pad_type_0, strides = var_227, weight = encoder_down_blocks_2_resnets_0_conv2_weight_to_fp16, x = input_49_cast_fp16)[name = tensor<string, []>("hidden_states_37_cast_fp16")];
tensor<int32, [2]> var_234 = const()[name = tensor<string, []>("op_234"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_236 = const()[name = tensor<string, []>("op_236"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_tensor_pad_type_0 = const()[name = tensor<string, []>("input_tensor_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_tensor_pad_0 = const()[name = tensor<string, []>("input_tensor_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<fp16, [512, 256, 1, 1]> encoder_down_blocks_2_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor<fp16, [512, 256, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13955776)))];
tensor<fp16, [512]> encoder_down_blocks_2_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14217984)))];
tensor<fp16, [1, 512, 96, 96]> input_tensor_cast_fp16 = conv(bias = encoder_down_blocks_2_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_236, groups = var_15, pad = input_tensor_pad_0, pad_type = input_tensor_pad_type_0, strides = var_234, weight = encoder_down_blocks_2_resnets_0_conv_shortcut_weight_to_fp16, x = input_41_cast_fp16)[name = tensor<string, []>("input_tensor_cast_fp16")];
tensor<fp16, [1, 512, 96, 96]> var_239_cast_fp16 = add(x = input_tensor_cast_fp16, y = hidden_states_37_cast_fp16)[name = tensor<string, []>("op_239_cast_fp16")];
tensor<int32, [5]> reshape_40_shape_0 = const()[name = tensor<string, []>("reshape_40_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 96, 96])];
tensor<fp16, [1, 32, 16, 96, 96]> reshape_40_cast_fp16 = reshape(shape = reshape_40_shape_0, x = var_239_cast_fp16)[name = tensor<string, []>("reshape_40_cast_fp16")];
tensor<int32, [3]> reduce_mean_30_axes_0 = const()[name = tensor<string, []>("reduce_mean_30_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_30_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_30_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_30_cast_fp16 = reduce_mean(axes = reduce_mean_30_axes_0, keep_dims = reduce_mean_30_keep_dims_0, x = reshape_40_cast_fp16)[name = tensor<string, []>("reduce_mean_30_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> sub_20_cast_fp16 = sub(x = reshape_40_cast_fp16, y = reduce_mean_30_cast_fp16)[name = tensor<string, []>("sub_20_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> square_10_cast_fp16 = square(x = sub_20_cast_fp16)[name = tensor<string, []>("square_10_cast_fp16")];
tensor<int32, [3]> reduce_mean_32_axes_0 = const()[name = tensor<string, []>("reduce_mean_32_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_32_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_32_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_32_cast_fp16 = reduce_mean(axes = reduce_mean_32_axes_0, keep_dims = reduce_mean_32_keep_dims_0, x = square_10_cast_fp16)[name = tensor<string, []>("reduce_mean_32_cast_fp16")];
tensor<fp16, []> add_20_y_0_to_fp16 = const()[name = tensor<string, []>("add_20_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_20_cast_fp16 = add(x = reduce_mean_32_cast_fp16, y = add_20_y_0_to_fp16)[name = tensor<string, []>("add_20_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_10_cast_fp16 = sqrt(x = add_20_cast_fp16)[name = tensor<string, []>("sqrt_10_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> real_div_10_cast_fp16 = real_div(x = sub_20_cast_fp16, y = sqrt_10_cast_fp16)[name = tensor<string, []>("real_div_10_cast_fp16")];
tensor<int32, [4]> reshape_41_shape_0 = const()[name = tensor<string, []>("reshape_41_shape_0"), val = tensor<int32, [4]>([1, 512, 96, 96])];
tensor<fp16, [1, 512, 96, 96]> reshape_41_cast_fp16 = reshape(shape = reshape_41_shape_0, x = real_div_10_cast_fp16)[name = tensor<string, []>("reshape_41_cast_fp16")];
tensor<fp16, [512]> add_21_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_21_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14219072)))];
tensor<fp16, [512]> add_21_beta_0_to_fp16 = const()[name = tensor<string, []>("add_21_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14220160)))];
tensor<fp16, []> add_21_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_21_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 96, 96]> add_21_cast_fp16 = batch_norm(beta = add_21_beta_0_to_fp16, epsilon = add_21_epsilon_0_to_fp16, gamma = add_21_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_41_cast_fp16)[name = tensor<string, []>("add_21_cast_fp16")];
tensor<fp16, [1, 512, 96, 96]> hidden_states_39_cast_fp16 = silu(x = add_21_cast_fp16)[name = tensor<string, []>("hidden_states_39_cast_fp16")];
tensor<int32, [2]> var_252 = const()[name = tensor<string, []>("op_252"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_254 = const()[name = tensor<string, []>("op_254"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_55_pad_type_0 = const()[name = tensor<string, []>("input_55_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_55_pad_0 = const()[name = tensor<string, []>("input_55_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_2_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14221248)))];
tensor<fp16, [512]> encoder_down_blocks_2_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18939904)))];
tensor<fp16, [1, 512, 96, 96]> input_55_cast_fp16 = conv(bias = encoder_down_blocks_2_resnets_1_conv1_bias_to_fp16, dilations = var_254, groups = var_15, pad = input_55_pad_0, pad_type = input_55_pad_type_0, strides = var_252, weight = encoder_down_blocks_2_resnets_1_conv1_weight_to_fp16, x = hidden_states_39_cast_fp16)[name = tensor<string, []>("input_55_cast_fp16")];
tensor<int32, [5]> reshape_44_shape_0 = const()[name = tensor<string, []>("reshape_44_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 96, 96])];
tensor<fp16, [1, 32, 16, 96, 96]> reshape_44_cast_fp16 = reshape(shape = reshape_44_shape_0, x = input_55_cast_fp16)[name = tensor<string, []>("reshape_44_cast_fp16")];
tensor<int32, [3]> reduce_mean_33_axes_0 = const()[name = tensor<string, []>("reduce_mean_33_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_33_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_33_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_33_cast_fp16 = reduce_mean(axes = reduce_mean_33_axes_0, keep_dims = reduce_mean_33_keep_dims_0, x = reshape_44_cast_fp16)[name = tensor<string, []>("reduce_mean_33_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> sub_22_cast_fp16 = sub(x = reshape_44_cast_fp16, y = reduce_mean_33_cast_fp16)[name = tensor<string, []>("sub_22_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> square_11_cast_fp16 = square(x = sub_22_cast_fp16)[name = tensor<string, []>("square_11_cast_fp16")];
tensor<int32, [3]> reduce_mean_35_axes_0 = const()[name = tensor<string, []>("reduce_mean_35_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_35_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_35_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_35_cast_fp16 = reduce_mean(axes = reduce_mean_35_axes_0, keep_dims = reduce_mean_35_keep_dims_0, x = square_11_cast_fp16)[name = tensor<string, []>("reduce_mean_35_cast_fp16")];
tensor<fp16, []> add_22_y_0_to_fp16 = const()[name = tensor<string, []>("add_22_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_22_cast_fp16 = add(x = reduce_mean_35_cast_fp16, y = add_22_y_0_to_fp16)[name = tensor<string, []>("add_22_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_11_cast_fp16 = sqrt(x = add_22_cast_fp16)[name = tensor<string, []>("sqrt_11_cast_fp16")];
tensor<fp16, [1, 32, 16, 96, 96]> real_div_11_cast_fp16 = real_div(x = sub_22_cast_fp16, y = sqrt_11_cast_fp16)[name = tensor<string, []>("real_div_11_cast_fp16")];
tensor<int32, [4]> reshape_45_shape_0 = const()[name = tensor<string, []>("reshape_45_shape_0"), val = tensor<int32, [4]>([1, 512, 96, 96])];
tensor<fp16, [1, 512, 96, 96]> reshape_45_cast_fp16 = reshape(shape = reshape_45_shape_0, x = real_div_11_cast_fp16)[name = tensor<string, []>("reshape_45_cast_fp16")];
tensor<fp16, [512]> add_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_23_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18940992)))];
tensor<fp16, [512]> add_23_beta_0_to_fp16 = const()[name = tensor<string, []>("add_23_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18942080)))];
tensor<fp16, []> add_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 96, 96]> add_23_cast_fp16 = batch_norm(beta = add_23_beta_0_to_fp16, epsilon = add_23_epsilon_0_to_fp16, gamma = add_23_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_45_cast_fp16)[name = tensor<string, []>("add_23_cast_fp16")];
tensor<fp16, [1, 512, 96, 96]> input_59_cast_fp16 = silu(x = add_23_cast_fp16)[name = tensor<string, []>("input_59_cast_fp16")];
tensor<int32, [2]> var_264 = const()[name = tensor<string, []>("op_264"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_266 = const()[name = tensor<string, []>("op_266"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_43_pad_type_0 = const()[name = tensor<string, []>("hidden_states_43_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_43_pad_0 = const()[name = tensor<string, []>("hidden_states_43_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_2_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18943168)))];
tensor<fp16, [512]> encoder_down_blocks_2_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23661824)))];
tensor<fp16, [1, 512, 96, 96]> hidden_states_43_cast_fp16 = conv(bias = encoder_down_blocks_2_resnets_1_conv2_bias_to_fp16, dilations = var_266, groups = var_15, pad = hidden_states_43_pad_0, pad_type = hidden_states_43_pad_type_0, strides = var_264, weight = encoder_down_blocks_2_resnets_1_conv2_weight_to_fp16, x = input_59_cast_fp16)[name = tensor<string, []>("hidden_states_43_cast_fp16")];
tensor<fp16, [1, 512, 96, 96]> var_269_cast_fp16 = add(x = var_239_cast_fp16, y = hidden_states_43_cast_fp16)[name = tensor<string, []>("op_269_cast_fp16")];
tensor<int32, [8]> hidden_states_47_pad_0 = const()[name = tensor<string, []>("hidden_states_47_pad_0"), val = tensor<int32, [8]>([0, 0, 0, 0, 0, 1, 0, 1])];
tensor<string, []> hidden_states_47_mode_0 = const()[name = tensor<string, []>("hidden_states_47_mode_0"), val = tensor<string, []>("constant")];
tensor<fp16, []> hidden_states_47_constant_val_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_47_constant_val_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
tensor<fp16, [1, 512, 97, 97]> hidden_states_47_cast_fp16 = pad(constant_val = hidden_states_47_constant_val_0_to_fp16, mode = hidden_states_47_mode_0, pad = hidden_states_47_pad_0, x = var_269_cast_fp16)[name = tensor<string, []>("hidden_states_47_cast_fp16")];
tensor<int32, [2]> var_277 = const()[name = tensor<string, []>("op_277"), val = tensor<int32, [2]>([2, 2])];
tensor<int32, [2]> var_279 = const()[name = tensor<string, []>("op_279"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_61_pad_type_0 = const()[name = tensor<string, []>("input_61_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_61_pad_0 = const()[name = tensor<string, []>("input_61_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_2_downsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_downsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23662912)))];
tensor<fp16, [512]> encoder_down_blocks_2_downsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_2_downsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28381568)))];
tensor<fp16, [1, 512, 48, 48]> input_61_cast_fp16 = conv(bias = encoder_down_blocks_2_downsamplers_0_conv_bias_to_fp16, dilations = var_279, groups = var_15, pad = input_61_pad_0, pad_type = input_61_pad_type_0, strides = var_277, weight = encoder_down_blocks_2_downsamplers_0_conv_weight_to_fp16, x = hidden_states_47_cast_fp16)[name = tensor<string, []>("input_61_cast_fp16")];
tensor<int32, [5]> reshape_48_shape_0 = const()[name = tensor<string, []>("reshape_48_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_48_cast_fp16 = reshape(shape = reshape_48_shape_0, x = input_61_cast_fp16)[name = tensor<string, []>("reshape_48_cast_fp16")];
tensor<int32, [3]> reduce_mean_36_axes_0 = const()[name = tensor<string, []>("reduce_mean_36_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_36_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_36_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_36_cast_fp16 = reduce_mean(axes = reduce_mean_36_axes_0, keep_dims = reduce_mean_36_keep_dims_0, x = reshape_48_cast_fp16)[name = tensor<string, []>("reduce_mean_36_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_24_cast_fp16 = sub(x = reshape_48_cast_fp16, y = reduce_mean_36_cast_fp16)[name = tensor<string, []>("sub_24_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_12_cast_fp16 = square(x = sub_24_cast_fp16)[name = tensor<string, []>("square_12_cast_fp16")];
tensor<int32, [3]> reduce_mean_38_axes_0 = const()[name = tensor<string, []>("reduce_mean_38_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_38_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_38_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_38_cast_fp16 = reduce_mean(axes = reduce_mean_38_axes_0, keep_dims = reduce_mean_38_keep_dims_0, x = square_12_cast_fp16)[name = tensor<string, []>("reduce_mean_38_cast_fp16")];
tensor<fp16, []> add_24_y_0_to_fp16 = const()[name = tensor<string, []>("add_24_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_24_cast_fp16 = add(x = reduce_mean_38_cast_fp16, y = add_24_y_0_to_fp16)[name = tensor<string, []>("add_24_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_12_cast_fp16 = sqrt(x = add_24_cast_fp16)[name = tensor<string, []>("sqrt_12_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_12_cast_fp16 = real_div(x = sub_24_cast_fp16, y = sqrt_12_cast_fp16)[name = tensor<string, []>("real_div_12_cast_fp16")];
tensor<int32, [4]> reshape_49_shape_0 = const()[name = tensor<string, []>("reshape_49_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_49_cast_fp16 = reshape(shape = reshape_49_shape_0, x = real_div_12_cast_fp16)[name = tensor<string, []>("reshape_49_cast_fp16")];
tensor<fp16, [512]> add_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_25_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28382656)))];
tensor<fp16, [512]> add_25_beta_0_to_fp16 = const()[name = tensor<string, []>("add_25_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28383744)))];
tensor<fp16, []> add_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_25_cast_fp16 = batch_norm(beta = add_25_beta_0_to_fp16, epsilon = add_25_epsilon_0_to_fp16, gamma = add_25_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_49_cast_fp16)[name = tensor<string, []>("add_25_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> hidden_states_49_cast_fp16 = silu(x = add_25_cast_fp16)[name = tensor<string, []>("hidden_states_49_cast_fp16")];
tensor<int32, [2]> var_296 = const()[name = tensor<string, []>("op_296"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_298 = const()[name = tensor<string, []>("op_298"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_65_pad_type_0 = const()[name = tensor<string, []>("input_65_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_65_pad_0 = const()[name = tensor<string, []>("input_65_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_3_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28384832)))];
tensor<fp16, [512]> encoder_down_blocks_3_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(33103488)))];
tensor<fp16, [1, 512, 48, 48]> input_65_cast_fp16 = conv(bias = encoder_down_blocks_3_resnets_0_conv1_bias_to_fp16, dilations = var_298, groups = var_15, pad = input_65_pad_0, pad_type = input_65_pad_type_0, strides = var_296, weight = encoder_down_blocks_3_resnets_0_conv1_weight_to_fp16, x = hidden_states_49_cast_fp16)[name = tensor<string, []>("input_65_cast_fp16")];
tensor<int32, [5]> reshape_52_shape_0 = const()[name = tensor<string, []>("reshape_52_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_52_cast_fp16 = reshape(shape = reshape_52_shape_0, x = input_65_cast_fp16)[name = tensor<string, []>("reshape_52_cast_fp16")];
tensor<int32, [3]> reduce_mean_39_axes_0 = const()[name = tensor<string, []>("reduce_mean_39_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_39_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_39_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_39_cast_fp16 = reduce_mean(axes = reduce_mean_39_axes_0, keep_dims = reduce_mean_39_keep_dims_0, x = reshape_52_cast_fp16)[name = tensor<string, []>("reduce_mean_39_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_26_cast_fp16 = sub(x = reshape_52_cast_fp16, y = reduce_mean_39_cast_fp16)[name = tensor<string, []>("sub_26_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_13_cast_fp16 = square(x = sub_26_cast_fp16)[name = tensor<string, []>("square_13_cast_fp16")];
tensor<int32, [3]> reduce_mean_41_axes_0 = const()[name = tensor<string, []>("reduce_mean_41_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_41_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_41_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_41_cast_fp16 = reduce_mean(axes = reduce_mean_41_axes_0, keep_dims = reduce_mean_41_keep_dims_0, x = square_13_cast_fp16)[name = tensor<string, []>("reduce_mean_41_cast_fp16")];
tensor<fp16, []> add_26_y_0_to_fp16 = const()[name = tensor<string, []>("add_26_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_26_cast_fp16 = add(x = reduce_mean_41_cast_fp16, y = add_26_y_0_to_fp16)[name = tensor<string, []>("add_26_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_13_cast_fp16 = sqrt(x = add_26_cast_fp16)[name = tensor<string, []>("sqrt_13_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_13_cast_fp16 = real_div(x = sub_26_cast_fp16, y = sqrt_13_cast_fp16)[name = tensor<string, []>("real_div_13_cast_fp16")];
tensor<int32, [4]> reshape_53_shape_0 = const()[name = tensor<string, []>("reshape_53_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_53_cast_fp16 = reshape(shape = reshape_53_shape_0, x = real_div_13_cast_fp16)[name = tensor<string, []>("reshape_53_cast_fp16")];
tensor<fp16, [512]> add_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_27_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(33104576)))];
tensor<fp16, [512]> add_27_beta_0_to_fp16 = const()[name = tensor<string, []>("add_27_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(33105664)))];
tensor<fp16, []> add_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_27_cast_fp16 = batch_norm(beta = add_27_beta_0_to_fp16, epsilon = add_27_epsilon_0_to_fp16, gamma = add_27_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_53_cast_fp16)[name = tensor<string, []>("add_27_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> input_69_cast_fp16 = silu(x = add_27_cast_fp16)[name = tensor<string, []>("input_69_cast_fp16")];
tensor<int32, [2]> var_308 = const()[name = tensor<string, []>("op_308"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_310 = const()[name = tensor<string, []>("op_310"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_53_pad_type_0 = const()[name = tensor<string, []>("hidden_states_53_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_53_pad_0 = const()[name = tensor<string, []>("hidden_states_53_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_3_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(33106752)))];
tensor<fp16, [512]> encoder_down_blocks_3_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(37825408)))];
tensor<fp16, [1, 512, 48, 48]> hidden_states_53_cast_fp16 = conv(bias = encoder_down_blocks_3_resnets_0_conv2_bias_to_fp16, dilations = var_310, groups = var_15, pad = hidden_states_53_pad_0, pad_type = hidden_states_53_pad_type_0, strides = var_308, weight = encoder_down_blocks_3_resnets_0_conv2_weight_to_fp16, x = input_69_cast_fp16)[name = tensor<string, []>("hidden_states_53_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> var_313_cast_fp16 = add(x = input_61_cast_fp16, y = hidden_states_53_cast_fp16)[name = tensor<string, []>("op_313_cast_fp16")];
tensor<int32, [5]> reshape_56_shape_0 = const()[name = tensor<string, []>("reshape_56_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_56_cast_fp16 = reshape(shape = reshape_56_shape_0, x = var_313_cast_fp16)[name = tensor<string, []>("reshape_56_cast_fp16")];
tensor<int32, [3]> reduce_mean_42_axes_0 = const()[name = tensor<string, []>("reduce_mean_42_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_42_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_42_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_42_cast_fp16 = reduce_mean(axes = reduce_mean_42_axes_0, keep_dims = reduce_mean_42_keep_dims_0, x = reshape_56_cast_fp16)[name = tensor<string, []>("reduce_mean_42_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_28_cast_fp16 = sub(x = reshape_56_cast_fp16, y = reduce_mean_42_cast_fp16)[name = tensor<string, []>("sub_28_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_14_cast_fp16 = square(x = sub_28_cast_fp16)[name = tensor<string, []>("square_14_cast_fp16")];
tensor<int32, [3]> reduce_mean_44_axes_0 = const()[name = tensor<string, []>("reduce_mean_44_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_44_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_44_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_44_cast_fp16 = reduce_mean(axes = reduce_mean_44_axes_0, keep_dims = reduce_mean_44_keep_dims_0, x = square_14_cast_fp16)[name = tensor<string, []>("reduce_mean_44_cast_fp16")];
tensor<fp16, []> add_28_y_0_to_fp16 = const()[name = tensor<string, []>("add_28_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_28_cast_fp16 = add(x = reduce_mean_44_cast_fp16, y = add_28_y_0_to_fp16)[name = tensor<string, []>("add_28_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_14_cast_fp16 = sqrt(x = add_28_cast_fp16)[name = tensor<string, []>("sqrt_14_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_14_cast_fp16 = real_div(x = sub_28_cast_fp16, y = sqrt_14_cast_fp16)[name = tensor<string, []>("real_div_14_cast_fp16")];
tensor<int32, [4]> reshape_57_shape_0 = const()[name = tensor<string, []>("reshape_57_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_57_cast_fp16 = reshape(shape = reshape_57_shape_0, x = real_div_14_cast_fp16)[name = tensor<string, []>("reshape_57_cast_fp16")];
tensor<fp16, [512]> add_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_29_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(37826496)))];
tensor<fp16, [512]> add_29_beta_0_to_fp16 = const()[name = tensor<string, []>("add_29_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(37827584)))];
tensor<fp16, []> add_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_29_cast_fp16 = batch_norm(beta = add_29_beta_0_to_fp16, epsilon = add_29_epsilon_0_to_fp16, gamma = add_29_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_57_cast_fp16)[name = tensor<string, []>("add_29_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> hidden_states_55_cast_fp16 = silu(x = add_29_cast_fp16)[name = tensor<string, []>("hidden_states_55_cast_fp16")];
tensor<int32, [2]> var_326 = const()[name = tensor<string, []>("op_326"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_328 = const()[name = tensor<string, []>("op_328"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_75_pad_type_0 = const()[name = tensor<string, []>("input_75_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_75_pad_0 = const()[name = tensor<string, []>("input_75_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_3_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(37828672)))];
tensor<fp16, [512]> encoder_down_blocks_3_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42547328)))];
tensor<fp16, [1, 512, 48, 48]> input_75_cast_fp16 = conv(bias = encoder_down_blocks_3_resnets_1_conv1_bias_to_fp16, dilations = var_328, groups = var_15, pad = input_75_pad_0, pad_type = input_75_pad_type_0, strides = var_326, weight = encoder_down_blocks_3_resnets_1_conv1_weight_to_fp16, x = hidden_states_55_cast_fp16)[name = tensor<string, []>("input_75_cast_fp16")];
tensor<int32, [5]> reshape_60_shape_0 = const()[name = tensor<string, []>("reshape_60_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_60_cast_fp16 = reshape(shape = reshape_60_shape_0, x = input_75_cast_fp16)[name = tensor<string, []>("reshape_60_cast_fp16")];
tensor<int32, [3]> reduce_mean_45_axes_0 = const()[name = tensor<string, []>("reduce_mean_45_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_45_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_45_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_45_cast_fp16 = reduce_mean(axes = reduce_mean_45_axes_0, keep_dims = reduce_mean_45_keep_dims_0, x = reshape_60_cast_fp16)[name = tensor<string, []>("reduce_mean_45_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_30_cast_fp16 = sub(x = reshape_60_cast_fp16, y = reduce_mean_45_cast_fp16)[name = tensor<string, []>("sub_30_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_15_cast_fp16 = square(x = sub_30_cast_fp16)[name = tensor<string, []>("square_15_cast_fp16")];
tensor<int32, [3]> reduce_mean_47_axes_0 = const()[name = tensor<string, []>("reduce_mean_47_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_47_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_47_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_47_cast_fp16 = reduce_mean(axes = reduce_mean_47_axes_0, keep_dims = reduce_mean_47_keep_dims_0, x = square_15_cast_fp16)[name = tensor<string, []>("reduce_mean_47_cast_fp16")];
tensor<fp16, []> add_30_y_0_to_fp16 = const()[name = tensor<string, []>("add_30_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_30_cast_fp16 = add(x = reduce_mean_47_cast_fp16, y = add_30_y_0_to_fp16)[name = tensor<string, []>("add_30_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_15_cast_fp16 = sqrt(x = add_30_cast_fp16)[name = tensor<string, []>("sqrt_15_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_15_cast_fp16 = real_div(x = sub_30_cast_fp16, y = sqrt_15_cast_fp16)[name = tensor<string, []>("real_div_15_cast_fp16")];
tensor<int32, [4]> reshape_61_shape_0 = const()[name = tensor<string, []>("reshape_61_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_61_cast_fp16 = reshape(shape = reshape_61_shape_0, x = real_div_15_cast_fp16)[name = tensor<string, []>("reshape_61_cast_fp16")];
tensor<fp16, [512]> add_31_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_31_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42548416)))];
tensor<fp16, [512]> add_31_beta_0_to_fp16 = const()[name = tensor<string, []>("add_31_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42549504)))];
tensor<fp16, []> add_31_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_31_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_31_cast_fp16 = batch_norm(beta = add_31_beta_0_to_fp16, epsilon = add_31_epsilon_0_to_fp16, gamma = add_31_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_61_cast_fp16)[name = tensor<string, []>("add_31_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> input_79_cast_fp16 = silu(x = add_31_cast_fp16)[name = tensor<string, []>("input_79_cast_fp16")];
tensor<int32, [2]> var_338 = const()[name = tensor<string, []>("op_338"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_340 = const()[name = tensor<string, []>("op_340"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_59_pad_type_0 = const()[name = tensor<string, []>("hidden_states_59_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_59_pad_0 = const()[name = tensor<string, []>("hidden_states_59_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_down_blocks_3_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42550592)))];
tensor<fp16, [512]> encoder_down_blocks_3_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_down_blocks_3_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47269248)))];
tensor<fp16, [1, 512, 48, 48]> hidden_states_59_cast_fp16 = conv(bias = encoder_down_blocks_3_resnets_1_conv2_bias_to_fp16, dilations = var_340, groups = var_15, pad = hidden_states_59_pad_0, pad_type = hidden_states_59_pad_type_0, strides = var_338, weight = encoder_down_blocks_3_resnets_1_conv2_weight_to_fp16, x = input_79_cast_fp16)[name = tensor<string, []>("hidden_states_59_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> var_343_cast_fp16 = add(x = var_313_cast_fp16, y = hidden_states_59_cast_fp16)[name = tensor<string, []>("op_343_cast_fp16")];
tensor<int32, [5]> reshape_64_shape_0 = const()[name = tensor<string, []>("reshape_64_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_64_cast_fp16 = reshape(shape = reshape_64_shape_0, x = var_343_cast_fp16)[name = tensor<string, []>("reshape_64_cast_fp16")];
tensor<int32, [3]> reduce_mean_48_axes_0 = const()[name = tensor<string, []>("reduce_mean_48_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_48_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_48_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_48_cast_fp16 = reduce_mean(axes = reduce_mean_48_axes_0, keep_dims = reduce_mean_48_keep_dims_0, x = reshape_64_cast_fp16)[name = tensor<string, []>("reduce_mean_48_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_32_cast_fp16 = sub(x = reshape_64_cast_fp16, y = reduce_mean_48_cast_fp16)[name = tensor<string, []>("sub_32_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_16_cast_fp16 = square(x = sub_32_cast_fp16)[name = tensor<string, []>("square_16_cast_fp16")];
tensor<int32, [3]> reduce_mean_50_axes_0 = const()[name = tensor<string, []>("reduce_mean_50_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_50_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_50_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_50_cast_fp16 = reduce_mean(axes = reduce_mean_50_axes_0, keep_dims = reduce_mean_50_keep_dims_0, x = square_16_cast_fp16)[name = tensor<string, []>("reduce_mean_50_cast_fp16")];
tensor<fp16, []> add_32_y_0_to_fp16 = const()[name = tensor<string, []>("add_32_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_32_cast_fp16 = add(x = reduce_mean_50_cast_fp16, y = add_32_y_0_to_fp16)[name = tensor<string, []>("add_32_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_16_cast_fp16 = sqrt(x = add_32_cast_fp16)[name = tensor<string, []>("sqrt_16_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_16_cast_fp16 = real_div(x = sub_32_cast_fp16, y = sqrt_16_cast_fp16)[name = tensor<string, []>("real_div_16_cast_fp16")];
tensor<int32, [4]> reshape_65_shape_0 = const()[name = tensor<string, []>("reshape_65_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_65_cast_fp16 = reshape(shape = reshape_65_shape_0, x = real_div_16_cast_fp16)[name = tensor<string, []>("reshape_65_cast_fp16")];
tensor<fp16, [512]> add_33_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_33_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47270336)))];
tensor<fp16, [512]> add_33_beta_0_to_fp16 = const()[name = tensor<string, []>("add_33_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47271424)))];
tensor<fp16, []> add_33_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_33_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_33_cast_fp16 = batch_norm(beta = add_33_beta_0_to_fp16, epsilon = add_33_epsilon_0_to_fp16, gamma = add_33_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_65_cast_fp16)[name = tensor<string, []>("add_33_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> hidden_states_61_cast_fp16 = silu(x = add_33_cast_fp16)[name = tensor<string, []>("hidden_states_61_cast_fp16")];
tensor<int32, [2]> var_362 = const()[name = tensor<string, []>("op_362"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_364 = const()[name = tensor<string, []>("op_364"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_85_pad_type_0 = const()[name = tensor<string, []>("input_85_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_85_pad_0 = const()[name = tensor<string, []>("input_85_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_mid_block_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47272512)))];
tensor<fp16, [512]> encoder_mid_block_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(51991168)))];
tensor<fp16, [1, 512, 48, 48]> input_85_cast_fp16 = conv(bias = encoder_mid_block_resnets_0_conv1_bias_to_fp16, dilations = var_364, groups = var_15, pad = input_85_pad_0, pad_type = input_85_pad_type_0, strides = var_362, weight = encoder_mid_block_resnets_0_conv1_weight_to_fp16, x = hidden_states_61_cast_fp16)[name = tensor<string, []>("input_85_cast_fp16")];
tensor<int32, [5]> reshape_68_shape_0 = const()[name = tensor<string, []>("reshape_68_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_68_cast_fp16 = reshape(shape = reshape_68_shape_0, x = input_85_cast_fp16)[name = tensor<string, []>("reshape_68_cast_fp16")];
tensor<int32, [3]> reduce_mean_51_axes_0 = const()[name = tensor<string, []>("reduce_mean_51_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_51_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_51_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_51_cast_fp16 = reduce_mean(axes = reduce_mean_51_axes_0, keep_dims = reduce_mean_51_keep_dims_0, x = reshape_68_cast_fp16)[name = tensor<string, []>("reduce_mean_51_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_34_cast_fp16 = sub(x = reshape_68_cast_fp16, y = reduce_mean_51_cast_fp16)[name = tensor<string, []>("sub_34_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_17_cast_fp16 = square(x = sub_34_cast_fp16)[name = tensor<string, []>("square_17_cast_fp16")];
tensor<int32, [3]> reduce_mean_53_axes_0 = const()[name = tensor<string, []>("reduce_mean_53_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_53_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_53_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_53_cast_fp16 = reduce_mean(axes = reduce_mean_53_axes_0, keep_dims = reduce_mean_53_keep_dims_0, x = square_17_cast_fp16)[name = tensor<string, []>("reduce_mean_53_cast_fp16")];
tensor<fp16, []> add_34_y_0_to_fp16 = const()[name = tensor<string, []>("add_34_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_34_cast_fp16 = add(x = reduce_mean_53_cast_fp16, y = add_34_y_0_to_fp16)[name = tensor<string, []>("add_34_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_17_cast_fp16 = sqrt(x = add_34_cast_fp16)[name = tensor<string, []>("sqrt_17_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_17_cast_fp16 = real_div(x = sub_34_cast_fp16, y = sqrt_17_cast_fp16)[name = tensor<string, []>("real_div_17_cast_fp16")];
tensor<int32, [4]> reshape_69_shape_0 = const()[name = tensor<string, []>("reshape_69_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_69_cast_fp16 = reshape(shape = reshape_69_shape_0, x = real_div_17_cast_fp16)[name = tensor<string, []>("reshape_69_cast_fp16")];
tensor<fp16, [512]> add_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_35_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(51992256)))];
tensor<fp16, [512]> add_35_beta_0_to_fp16 = const()[name = tensor<string, []>("add_35_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(51993344)))];
tensor<fp16, []> add_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_35_cast_fp16 = batch_norm(beta = add_35_beta_0_to_fp16, epsilon = add_35_epsilon_0_to_fp16, gamma = add_35_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_69_cast_fp16)[name = tensor<string, []>("add_35_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> input_89_cast_fp16 = silu(x = add_35_cast_fp16)[name = tensor<string, []>("input_89_cast_fp16")];
tensor<int32, [2]> var_374 = const()[name = tensor<string, []>("op_374"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_376 = const()[name = tensor<string, []>("op_376"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_65_pad_type_0 = const()[name = tensor<string, []>("hidden_states_65_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_65_pad_0 = const()[name = tensor<string, []>("hidden_states_65_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_mid_block_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(51994432)))];
tensor<fp16, [512]> encoder_mid_block_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56713088)))];
tensor<fp16, [1, 512, 48, 48]> hidden_states_65_cast_fp16 = conv(bias = encoder_mid_block_resnets_0_conv2_bias_to_fp16, dilations = var_376, groups = var_15, pad = hidden_states_65_pad_0, pad_type = hidden_states_65_pad_type_0, strides = var_374, weight = encoder_mid_block_resnets_0_conv2_weight_to_fp16, x = input_89_cast_fp16)[name = tensor<string, []>("hidden_states_65_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> var_379_cast_fp16 = add(x = var_343_cast_fp16, y = hidden_states_65_cast_fp16)[name = tensor<string, []>("op_379_cast_fp16")];
tensor<int32, [4]> reshape_72_shape_0 = const()[name = tensor<string, []>("reshape_72_shape_0"), val = tensor<int32, [4]>([1, 32, 16, 2304])];
tensor<fp16, [1, 32, 16, 2304]> reshape_72_cast_fp16 = reshape(shape = reshape_72_shape_0, x = var_379_cast_fp16)[name = tensor<string, []>("reshape_72_cast_fp16")];
tensor<int32, [2]> reduce_mean_54_axes_0 = const()[name = tensor<string, []>("reduce_mean_54_axes_0"), val = tensor<int32, [2]>([2, 3])];
tensor<bool, []> reduce_mean_54_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_54_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1]> reduce_mean_54_cast_fp16 = reduce_mean(axes = reduce_mean_54_axes_0, keep_dims = reduce_mean_54_keep_dims_0, x = reshape_72_cast_fp16)[name = tensor<string, []>("reduce_mean_54_cast_fp16")];
tensor<fp16, [1, 32, 16, 2304]> sub_36_cast_fp16 = sub(x = reshape_72_cast_fp16, y = reduce_mean_54_cast_fp16)[name = tensor<string, []>("sub_36_cast_fp16")];
tensor<fp16, [1, 32, 16, 2304]> square_18_cast_fp16 = square(x = sub_36_cast_fp16)[name = tensor<string, []>("square_18_cast_fp16")];
tensor<int32, [2]> reduce_mean_56_axes_0 = const()[name = tensor<string, []>("reduce_mean_56_axes_0"), val = tensor<int32, [2]>([2, 3])];
tensor<bool, []> reduce_mean_56_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_56_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1]> reduce_mean_56_cast_fp16 = reduce_mean(axes = reduce_mean_56_axes_0, keep_dims = reduce_mean_56_keep_dims_0, x = square_18_cast_fp16)[name = tensor<string, []>("reduce_mean_56_cast_fp16")];
tensor<fp16, []> add_36_y_0_to_fp16 = const()[name = tensor<string, []>("add_36_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1]> add_36_cast_fp16 = add(x = reduce_mean_56_cast_fp16, y = add_36_y_0_to_fp16)[name = tensor<string, []>("add_36_cast_fp16")];
tensor<fp16, [1, 32, 1, 1]> sqrt_18_cast_fp16 = sqrt(x = add_36_cast_fp16)[name = tensor<string, []>("sqrt_18_cast_fp16")];
tensor<fp16, [1, 32, 16, 2304]> real_div_18_cast_fp16 = real_div(x = sub_36_cast_fp16, y = sqrt_18_cast_fp16)[name = tensor<string, []>("real_div_18_cast_fp16")];
tensor<int32, [3]> reshape_73_shape_0 = const()[name = tensor<string, []>("reshape_73_shape_0"), val = tensor<int32, [3]>([1, 512, 2304])];
tensor<fp16, [1, 512, 2304]> reshape_73_cast_fp16 = reshape(shape = reshape_73_shape_0, x = real_div_18_cast_fp16)[name = tensor<string, []>("reshape_73_cast_fp16")];
tensor<fp16, [1, 512, 1]> reshape_74_to_fp16 = const()[name = tensor<string, []>("reshape_74_to_fp16"), val = tensor<fp16, [1, 512, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56714176)))];
tensor<fp16, [1, 512, 2304]> mul_18_cast_fp16 = mul(x = reshape_73_cast_fp16, y = reshape_74_to_fp16)[name = tensor<string, []>("mul_18_cast_fp16")];
tensor<fp16, [1, 512, 1]> reshape_75_to_fp16 = const()[name = tensor<string, []>("reshape_75_to_fp16"), val = tensor<fp16, [1, 512, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56715264)))];
tensor<fp16, [1, 512, 2304]> add_37_cast_fp16 = add(x = mul_18_cast_fp16, y = reshape_75_to_fp16)[name = tensor<string, []>("add_37_cast_fp16")];
tensor<int32, [3]> input_93_perm_0 = const()[name = tensor<string, []>("input_93_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<fp16, [512, 512]> encoder_mid_block_attentions_0_to_q_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_q_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56716352)))];
tensor<fp16, [512]> encoder_mid_block_attentions_0_to_q_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_q_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(57240704)))];
tensor<fp16, [1, 2304, 512]> transpose_11 = transpose(perm = input_93_perm_0, x = add_37_cast_fp16)[name = tensor<string, []>("transpose_11")];
tensor<fp16, [1, 2304, 512]> linear_0_cast_fp16 = linear(bias = encoder_mid_block_attentions_0_to_q_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_q_weight_to_fp16, x = transpose_11)[name = tensor<string, []>("linear_0_cast_fp16")];
tensor<fp16, [512, 512]> encoder_mid_block_attentions_0_to_k_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_k_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(57241792)))];
tensor<fp16, [512]> encoder_mid_block_attentions_0_to_k_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_k_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(57766144)))];
tensor<fp16, [1, 2304, 512]> linear_1_cast_fp16 = linear(bias = encoder_mid_block_attentions_0_to_k_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_k_weight_to_fp16, x = transpose_11)[name = tensor<string, []>("linear_1_cast_fp16")];
tensor<fp16, [512, 512]> encoder_mid_block_attentions_0_to_v_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_v_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(57767232)))];
tensor<fp16, [512]> encoder_mid_block_attentions_0_to_v_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_v_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58291584)))];
tensor<fp16, [1, 2304, 512]> linear_2_cast_fp16 = linear(bias = encoder_mid_block_attentions_0_to_v_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_v_weight_to_fp16, x = transpose_11)[name = tensor<string, []>("linear_2_cast_fp16")];
tensor<int32, [4]> var_420 = const()[name = tensor<string, []>("op_420"), val = tensor<int32, [4]>([1, -1, 1, 512])];
tensor<fp16, [1, 2304, 1, 512]> var_421_cast_fp16 = reshape(shape = var_420, x = linear_0_cast_fp16)[name = tensor<string, []>("op_421_cast_fp16")];
tensor<int32, [4]> var_423 = const()[name = tensor<string, []>("op_423"), val = tensor<int32, [4]>([1, -1, 1, 512])];
tensor<fp16, [1, 2304, 1, 512]> var_424_cast_fp16 = reshape(shape = var_423, x = linear_1_cast_fp16)[name = tensor<string, []>("op_424_cast_fp16")];
tensor<int32, [4]> var_426 = const()[name = tensor<string, []>("op_426"), val = tensor<int32, [4]>([1, -1, 1, 512])];
tensor<fp16, [1, 2304, 1, 512]> var_427_cast_fp16 = reshape(shape = var_426, x = linear_2_cast_fp16)[name = tensor<string, []>("op_427_cast_fp16")];
tensor<int32, [4]> value_perm_0 = const()[name = tensor<string, []>("value_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, []> mul_19_y_0_to_fp16 = const()[name = tensor<string, []>("mul_19_y_0_to_fp16"), val = tensor<fp16, []>(0x1.6ap-5)];
tensor<fp16, [1, 2304, 1, 512]> mul_19_cast_fp16 = mul(x = var_421_cast_fp16, y = mul_19_y_0_to_fp16)[name = tensor<string, []>("mul_19_cast_fp16")];
tensor<bool, []> matmul_0_transpose_y_0 = const()[name = tensor<string, []>("matmul_0_transpose_y_0"), val = tensor<bool, []>(true)];
tensor<bool, []> matmul_0_transpose_x_0 = const()[name = tensor<string, []>("matmul_0_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<int32, [4]> transpose_4_perm_0 = const()[name = tensor<string, []>("transpose_4_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> transpose_5_perm_0 = const()[name = tensor<string, []>("transpose_5_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [1, 1, 2304, 512]> transpose_8 = transpose(perm = transpose_5_perm_0, x = var_424_cast_fp16)[name = tensor<string, []>("transpose_8")];
tensor<fp16, [1, 1, 2304, 512]> transpose_9 = transpose(perm = transpose_4_perm_0, x = mul_19_cast_fp16)[name = tensor<string, []>("transpose_9")];
tensor<fp16, [1, 1, 2304, 2304]> matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = transpose_9, y = transpose_8)[name = tensor<string, []>("matmul_0_cast_fp16")];
tensor<int32, []> softmax_0_axis_0 = const()[name = tensor<string, []>("softmax_0_axis_0"), val = tensor<int32, []>(-1)];
tensor<fp16, [1, 1, 2304, 2304]> softmax_0_cast_fp16 = softmax(axis = softmax_0_axis_0, x = matmul_0_cast_fp16)[name = tensor<string, []>("softmax_0_cast_fp16")];
tensor<bool, []> hidden_states_71_transpose_x_0 = const()[name = tensor<string, []>("hidden_states_71_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> hidden_states_71_transpose_y_0 = const()[name = tensor<string, []>("hidden_states_71_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [1, 1, 2304, 512]> transpose_10 = transpose(perm = value_perm_0, x = var_427_cast_fp16)[name = tensor<string, []>("transpose_10")];
tensor<fp16, [1, 1, 2304, 512]> hidden_states_71_cast_fp16 = matmul(transpose_x = hidden_states_71_transpose_x_0, transpose_y = hidden_states_71_transpose_y_0, x = softmax_0_cast_fp16, y = transpose_10)[name = tensor<string, []>("hidden_states_71_cast_fp16")];
tensor<int32, [4]> var_430_perm_0 = const()[name = tensor<string, []>("op_430_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_434 = const()[name = tensor<string, []>("op_434"), val = tensor<int32, [3]>([1, -1, 512])];
tensor<fp16, [1, 2304, 1, 512]> transpose_7 = transpose(perm = var_430_perm_0, x = hidden_states_71_cast_fp16)[name = tensor<string, []>("transpose_7")];
tensor<fp16, [1, 2304, 512]> hidden_states_73_cast_fp16 = reshape(shape = var_434, x = transpose_7)[name = tensor<string, []>("hidden_states_73_cast_fp16")];
tensor<fp16, [512, 512]> encoder_mid_block_attentions_0_to_out_0_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_out_0_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58292672)))];
tensor<fp16, [512]> encoder_mid_block_attentions_0_to_out_0_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_attentions_0_to_out_0_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58817024)))];
tensor<fp16, [1, 2304, 512]> linear_3_cast_fp16 = linear(bias = encoder_mid_block_attentions_0_to_out_0_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_out_0_weight_to_fp16, x = hidden_states_73_cast_fp16)[name = tensor<string, []>("linear_3_cast_fp16")];
tensor<int32, [3]> var_441_perm_0 = const()[name = tensor<string, []>("op_441_perm_0"), val = tensor<int32, [3]>([0, -1, -2])];
tensor<int32, [4]> var_442 = const()[name = tensor<string, []>("op_442"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 2304]> transpose_6 = transpose(perm = var_441_perm_0, x = linear_3_cast_fp16)[name = tensor<string, []>("transpose_6")];
tensor<fp16, [1, 512, 48, 48]> hidden_states_77_cast_fp16 = reshape(shape = var_442, x = transpose_6)[name = tensor<string, []>("hidden_states_77_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> hidden_states_79_cast_fp16 = add(x = hidden_states_77_cast_fp16, y = var_379_cast_fp16)[name = tensor<string, []>("hidden_states_79_cast_fp16")];
tensor<int32, [5]> reshape_76_shape_0 = const()[name = tensor<string, []>("reshape_76_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_76_cast_fp16 = reshape(shape = reshape_76_shape_0, x = hidden_states_79_cast_fp16)[name = tensor<string, []>("reshape_76_cast_fp16")];
tensor<int32, [3]> reduce_mean_57_axes_0 = const()[name = tensor<string, []>("reduce_mean_57_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_57_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_57_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_57_cast_fp16 = reduce_mean(axes = reduce_mean_57_axes_0, keep_dims = reduce_mean_57_keep_dims_0, x = reshape_76_cast_fp16)[name = tensor<string, []>("reduce_mean_57_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_38_cast_fp16 = sub(x = reshape_76_cast_fp16, y = reduce_mean_57_cast_fp16)[name = tensor<string, []>("sub_38_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_19_cast_fp16 = square(x = sub_38_cast_fp16)[name = tensor<string, []>("square_19_cast_fp16")];
tensor<int32, [3]> reduce_mean_59_axes_0 = const()[name = tensor<string, []>("reduce_mean_59_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_59_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_59_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_59_cast_fp16 = reduce_mean(axes = reduce_mean_59_axes_0, keep_dims = reduce_mean_59_keep_dims_0, x = square_19_cast_fp16)[name = tensor<string, []>("reduce_mean_59_cast_fp16")];
tensor<fp16, []> add_38_y_0_to_fp16 = const()[name = tensor<string, []>("add_38_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_38_cast_fp16 = add(x = reduce_mean_59_cast_fp16, y = add_38_y_0_to_fp16)[name = tensor<string, []>("add_38_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_19_cast_fp16 = sqrt(x = add_38_cast_fp16)[name = tensor<string, []>("sqrt_19_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_19_cast_fp16 = real_div(x = sub_38_cast_fp16, y = sqrt_19_cast_fp16)[name = tensor<string, []>("real_div_19_cast_fp16")];
tensor<int32, [4]> reshape_77_shape_0 = const()[name = tensor<string, []>("reshape_77_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_77_cast_fp16 = reshape(shape = reshape_77_shape_0, x = real_div_19_cast_fp16)[name = tensor<string, []>("reshape_77_cast_fp16")];
tensor<fp16, [512]> add_39_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_39_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58818112)))];
tensor<fp16, [512]> add_39_beta_0_to_fp16 = const()[name = tensor<string, []>("add_39_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58819200)))];
tensor<fp16, []> add_39_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_39_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_39_cast_fp16 = batch_norm(beta = add_39_beta_0_to_fp16, epsilon = add_39_epsilon_0_to_fp16, gamma = add_39_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_77_cast_fp16)[name = tensor<string, []>("add_39_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> hidden_states_81_cast_fp16 = silu(x = add_39_cast_fp16)[name = tensor<string, []>("hidden_states_81_cast_fp16")];
tensor<int32, [2]> var_457 = const()[name = tensor<string, []>("op_457"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_459 = const()[name = tensor<string, []>("op_459"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_103_pad_type_0 = const()[name = tensor<string, []>("input_103_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_103_pad_0 = const()[name = tensor<string, []>("input_103_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_mid_block_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58820288)))];
tensor<fp16, [512]> encoder_mid_block_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63538944)))];
tensor<fp16, [1, 512, 48, 48]> input_103_cast_fp16 = conv(bias = encoder_mid_block_resnets_1_conv1_bias_to_fp16, dilations = var_459, groups = var_15, pad = input_103_pad_0, pad_type = input_103_pad_type_0, strides = var_457, weight = encoder_mid_block_resnets_1_conv1_weight_to_fp16, x = hidden_states_81_cast_fp16)[name = tensor<string, []>("input_103_cast_fp16")];
tensor<int32, [5]> reshape_80_shape_0 = const()[name = tensor<string, []>("reshape_80_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_80_cast_fp16 = reshape(shape = reshape_80_shape_0, x = input_103_cast_fp16)[name = tensor<string, []>("reshape_80_cast_fp16")];
tensor<int32, [3]> reduce_mean_60_axes_0 = const()[name = tensor<string, []>("reduce_mean_60_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_60_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_60_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_60_cast_fp16 = reduce_mean(axes = reduce_mean_60_axes_0, keep_dims = reduce_mean_60_keep_dims_0, x = reshape_80_cast_fp16)[name = tensor<string, []>("reduce_mean_60_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_40_cast_fp16 = sub(x = reshape_80_cast_fp16, y = reduce_mean_60_cast_fp16)[name = tensor<string, []>("sub_40_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_20_cast_fp16 = square(x = sub_40_cast_fp16)[name = tensor<string, []>("square_20_cast_fp16")];
tensor<int32, [3]> reduce_mean_62_axes_0 = const()[name = tensor<string, []>("reduce_mean_62_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_62_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_62_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_62_cast_fp16 = reduce_mean(axes = reduce_mean_62_axes_0, keep_dims = reduce_mean_62_keep_dims_0, x = square_20_cast_fp16)[name = tensor<string, []>("reduce_mean_62_cast_fp16")];
tensor<fp16, []> add_40_y_0_to_fp16 = const()[name = tensor<string, []>("add_40_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_40_cast_fp16 = add(x = reduce_mean_62_cast_fp16, y = add_40_y_0_to_fp16)[name = tensor<string, []>("add_40_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_20_cast_fp16 = sqrt(x = add_40_cast_fp16)[name = tensor<string, []>("sqrt_20_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_20_cast_fp16 = real_div(x = sub_40_cast_fp16, y = sqrt_20_cast_fp16)[name = tensor<string, []>("real_div_20_cast_fp16")];
tensor<int32, [4]> reshape_81_shape_0 = const()[name = tensor<string, []>("reshape_81_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_81_cast_fp16 = reshape(shape = reshape_81_shape_0, x = real_div_20_cast_fp16)[name = tensor<string, []>("reshape_81_cast_fp16")];
tensor<fp16, [512]> add_41_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_41_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63540032)))];
tensor<fp16, [512]> add_41_beta_0_to_fp16 = const()[name = tensor<string, []>("add_41_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63541120)))];
tensor<fp16, []> add_41_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_41_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_41_cast_fp16 = batch_norm(beta = add_41_beta_0_to_fp16, epsilon = add_41_epsilon_0_to_fp16, gamma = add_41_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_81_cast_fp16)[name = tensor<string, []>("add_41_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> input_107_cast_fp16 = silu(x = add_41_cast_fp16)[name = tensor<string, []>("input_107_cast_fp16")];
tensor<int32, [2]> var_469 = const()[name = tensor<string, []>("op_469"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_471 = const()[name = tensor<string, []>("op_471"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [512, 512, 3, 3]> encoder_mid_block_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63542208)))];
tensor<fp16, [512]> encoder_mid_block_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_mid_block_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68260864)))];
tensor<fp16, [1, 512, 48, 48]> hidden_states_cast_fp16 = conv(bias = encoder_mid_block_resnets_1_conv2_bias_to_fp16, dilations = var_471, groups = var_15, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_469, weight = encoder_mid_block_resnets_1_conv2_weight_to_fp16, x = input_107_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> var_474_cast_fp16 = add(x = hidden_states_79_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("op_474_cast_fp16")];
tensor<int32, [5]> reshape_84_shape_0 = const()[name = tensor<string, []>("reshape_84_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 48, 48])];
tensor<fp16, [1, 32, 16, 48, 48]> reshape_84_cast_fp16 = reshape(shape = reshape_84_shape_0, x = var_474_cast_fp16)[name = tensor<string, []>("reshape_84_cast_fp16")];
tensor<int32, [3]> reduce_mean_63_axes_0 = const()[name = tensor<string, []>("reduce_mean_63_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_63_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_63_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_63_cast_fp16 = reduce_mean(axes = reduce_mean_63_axes_0, keep_dims = reduce_mean_63_keep_dims_0, x = reshape_84_cast_fp16)[name = tensor<string, []>("reduce_mean_63_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> sub_42_cast_fp16 = sub(x = reshape_84_cast_fp16, y = reduce_mean_63_cast_fp16)[name = tensor<string, []>("sub_42_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> square_21_cast_fp16 = square(x = sub_42_cast_fp16)[name = tensor<string, []>("square_21_cast_fp16")];
tensor<int32, [3]> reduce_mean_65_axes_0 = const()[name = tensor<string, []>("reduce_mean_65_axes_0"), val = tensor<int32, [3]>([2, 3, 4])];
tensor<bool, []> reduce_mean_65_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_65_keep_dims_0"), val = tensor<bool, []>(true)];
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_65_cast_fp16 = reduce_mean(axes = reduce_mean_65_axes_0, keep_dims = reduce_mean_65_keep_dims_0, x = square_21_cast_fp16)[name = tensor<string, []>("reduce_mean_65_cast_fp16")];
tensor<fp16, []> add_42_y_0_to_fp16 = const()[name = tensor<string, []>("add_42_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)];
tensor<fp16, [1, 32, 1, 1, 1]> add_42_cast_fp16 = add(x = reduce_mean_65_cast_fp16, y = add_42_y_0_to_fp16)[name = tensor<string, []>("add_42_cast_fp16")];
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_21_cast_fp16 = sqrt(x = add_42_cast_fp16)[name = tensor<string, []>("sqrt_21_cast_fp16")];
tensor<fp16, [1, 32, 16, 48, 48]> real_div_21_cast_fp16 = real_div(x = sub_42_cast_fp16, y = sqrt_21_cast_fp16)[name = tensor<string, []>("real_div_21_cast_fp16")];
tensor<int32, [4]> reshape_85_shape_0 = const()[name = tensor<string, []>("reshape_85_shape_0"), val = tensor<int32, [4]>([1, 512, 48, 48])];
tensor<fp16, [1, 512, 48, 48]> reshape_85_cast_fp16 = reshape(shape = reshape_85_shape_0, x = real_div_21_cast_fp16)[name = tensor<string, []>("reshape_85_cast_fp16")];
tensor<fp16, [512]> add_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_43_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68261952)))];
tensor<fp16, [512]> add_43_beta_0_to_fp16 = const()[name = tensor<string, []>("add_43_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68263040)))];
tensor<fp16, []> add_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 512, 48, 48]> add_43_cast_fp16 = batch_norm(beta = add_43_beta_0_to_fp16, epsilon = add_43_epsilon_0_to_fp16, gamma = add_43_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_85_cast_fp16)[name = tensor<string, []>("add_43_cast_fp16")];
tensor<fp16, [1, 512, 48, 48]> input_113_cast_fp16 = silu(x = add_43_cast_fp16)[name = tensor<string, []>("input_113_cast_fp16")];
tensor<int32, [2]> var_483 = const()[name = tensor<string, []>("op_483"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_485 = const()[name = tensor<string, []>("op_485"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> input_pad_type_0 = const()[name = tensor<string, []>("input_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> input_pad_0 = const()[name = tensor<string, []>("input_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
tensor<fp16, [8, 512, 3, 3]> encoder_conv_out_weight_to_fp16 = const()[name = tensor<string, []>("encoder_conv_out_weight_to_fp16"), val = tensor<fp16, [8, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68264128)))];
tensor<fp16, [8]> encoder_conv_out_bias_to_fp16 = const()[name = tensor<string, []>("encoder_conv_out_bias_to_fp16"), val = tensor<fp16, [8]>([-0x1.734p-9, 0x1.0f4p-8, 0x1.afp-6, -0x1.494p-7, -0x1.ep-9, -0x1.924p-8, -0x1.1dp-10, -0x1.4b8p-8])];
tensor<fp16, [1, 8, 48, 48]> input_cast_fp16 = conv(bias = encoder_conv_out_bias_to_fp16, dilations = var_485, groups = var_15, pad = input_pad_0, pad_type = input_pad_type_0, strides = var_483, weight = encoder_conv_out_weight_to_fp16, x = input_113_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
tensor<int32, []> var_491 = const()[name = tensor<string, []>("op_491"), val = tensor<int32, []>(1)];
tensor<int32, [2]> var_494 = const()[name = tensor<string, []>("op_494"), val = tensor<int32, [2]>([1, 1])];
tensor<int32, [2]> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, [2]>([1, 1])];
tensor<string, []> var_498_pad_type_0 = const()[name = tensor<string, []>("op_498_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [4]> var_498_pad_0 = const()[name = tensor<string, []>("op_498_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
tensor<fp16, [8, 8, 1, 1]> quant_conv_weight_to_fp16 = const()[name = tensor<string, []>("quant_conv_weight_to_fp16"), val = tensor<fp16, [8, 8, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68337920)))];
tensor<fp16, [8]> quant_conv_bias_to_fp16 = const()[name = tensor<string, []>("quant_conv_bias_to_fp16"), val = tensor<fp16, [8]>([0x1.8cp-3, 0x1.d68p-4, -0x1.b8cp-4, -0x1.5fp-2, -0x1.284p+1, -0x1.09cp+1, -0x1.178p+1, -0x1.1d8p+1])];
tensor<fp16, [1, 8, 48, 48]> var_498_cast_fp16 = conv(bias = quant_conv_bias_to_fp16, dilations = var_496, groups = var_491, pad = var_498_pad_0, pad_type = var_498_pad_type_0, strides = var_494, weight = quant_conv_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("op_498_cast_fp16")];
tensor<string, []> var_498_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_498_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
tensor<fp32, [1, 8, 48, 48]> latent = cast(dtype = var_498_cast_fp16_to_fp32_dtype_0, x = var_498_cast_fp16)[name = tensor<string, []>("cast_29")];
} -> (latent);
} |