--- language: - br license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 br type: mozilla-foundation/common_voice_11_0 config: br split: test args: br metrics: - name: Wer type: wer value: 41.611670718999655 --- # Whisper Medium Breton This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 br dataset. It achieves the following results on the evaluation set: - Loss: 0.8486 - Wer: 41.6117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0602 | 5.03 | 1000 | 0.7324 | 43.6957 | | 0.0036 | 10.05 | 2000 | 0.8486 | 41.6117 | | 0.001 | 15.08 | 3000 | 0.9033 | 42.0458 | | 0.0004 | 20.1 | 4000 | 0.9351 | 41.6811 | | 0.0003 | 25.13 | 5000 | 0.9468 | 41.7853 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2