--- license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - accuracy - f1 - precision - recall model-index: - name: NER-finetuned-BETO results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.9697960575254153 - name: F1 type: f1 value: 0.9693514387921158 - name: Precision type: precision value: 0.9691715895096829 - name: Recall type: recall value: 0.9697960575254153 --- # NER-finetuned-BETO This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1898 - Accuracy: 0.9698 - F1: 0.9694 - Precision: 0.9692 - Recall: 0.9698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0509 | 1.0 | 521 | 0.1309 | 0.9700 | 0.9696 | 0.9698 | 0.9700 | | 0.0292 | 2.0 | 1042 | 0.1618 | 0.9679 | 0.9673 | 0.9670 | 0.9679 | | 0.0178 | 3.0 | 1563 | 0.1460 | 0.9718 | 0.9712 | 0.9709 | 0.9718 | | 0.0141 | 4.0 | 2084 | 0.1775 | 0.9689 | 0.9682 | 0.9680 | 0.9689 | | 0.0091 | 5.0 | 2605 | 0.1815 | 0.9700 | 0.9695 | 0.9693 | 0.9700 | | 0.007 | 6.0 | 3126 | 0.1898 | 0.9698 | 0.9694 | 0.9692 | 0.9698 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1