Bodolaz commited on
Commit
92449b2
·
1 Parent(s): 913b5a3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 879.97 +/- 52.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c7ae087ba0d293f58e9f7035a0efd248b64246fcec725a41a6d2c07db1f2485
3
+ size 129245
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0ba7fc820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0ba7fc8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0ba7fc940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0ba7fc9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb0ba7fca60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb0ba7fcaf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0ba7fcb80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0ba7fcc10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb0ba7fcca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0ba7fcd30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0ba7fcdc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0ba7fce50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb0ba9eefc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 600000,
36
+ "_total_timesteps": 600000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1687350309957705871,
41
+ "learning_rate": 0.0001,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEnpF76GvXY/hA2qvXVVb76hKh++9BjRPcZ7sT+OrSo/k9JVP6jFf7wVHkg/zvi2vXQzBMBgi12/6LBjP5cstr59Tku/Qc1APD5uRz3QTVQ9FQvCP9KBLD0nRqK/LxKZvQSdlT775ibA7fPYPncKoD7FD40/QZvJP2KQf7+SLzrA30w0wFcgYz3ZFzS9pgi+PqNqvb8IXci+IQL2PgysQ79tRle/u0UTwPlFsb+WG8E9BVUxv6dylsAQJTC/qolBv+AUNr94Iww+RmgsP7r/Rj4EnZU+mVTEPpUJF8B3CqA+pwGKPwA5A0BwDAXAxxurPTLr1T+DxkY+P+ikvfqC/z4ZAlY/0CZvve9ART9ZEiM+JdIdwHqw37tE8Ci/F36UwFCz7j9B2AA/xVW3v43Fpj+qACVAg6fWPwFvVD+m+Ka9BJ2VPvvmJsDt89g+dwqgPtQMsz6RSss+4qnGPtx7xb1DUIQ+yG9uPQHWxrxEBGu/tIefPQ9zWz7l7Ao/+FAyvS+JOj/JWB8+gwMqPysdMT6rCAc/eaA0Plua5D5R8gw+D6XCPkcarz0b5lM/NIqwvQSdlT6ZVMQ+7fPYPncKoD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAs7Mc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzjEIvgAAAAB9TvS/AAAAAIByoj0AAAAA57z2PwAAAAB3YJY9AAAAAIVs4j8AAAAAKd8QPQAAAADmUOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4Q5tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHWXDj4AAAAAxOrmvwAAAABSPMk9AAAAANxm9D8AAAAABlcMPQAAAAABzNg/AAAAALjC6T0AAAAAbL7ZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJO/irUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDIjI09AAAAAC0Q878AAAAAiXWPvAAAAABgW/0/AAAAAM3JaD0AAAAAs1DzPwAAAAD/+YE8AAAAAGTb978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg5xo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAix+FvQAAAABFNPi/AAAAANntGr0AAAAA8Tb4PwAAAAAbk269AAAAAKZiAEAAAAAAURkMvgAAAAACJO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbnHAqNIbyMAWyUTegDjAF0lEdAjsdO2iL2pXV9lChoBkdAixSiO3lS0mgHTegDaAhHQI7L3o5ggHN1fZQoaAZHQIrjFpEhJRRoB03oA2gIR0CO3gL/CIk7dX2UKGgGR0CKaheUpuuSaAdN6ANoCEdAjuFXxWkrPXV9lChoBkdAinqlPrOZ9mgHTegDaAhHQI765/ustCl1fZQoaAZHQIj9vyCnP3VoB03oA2gIR0CO/7WmP5pKdX2UKGgGR0CKam1FYuCgaAdN6ANoCEdAjxxv69CeE3V9lChoBkdAij2WTPjXF2gHTegDaAhHQI8h+1hLGrF1fZQoaAZHQIum7rJKaodoB03oA2gIR0CPP9zGxUvPdX2UKGgGR0CM5iNOM2m6aAdN6ANoCEdAj0SQ7DEWI3V9lChoBkdAi4l3Dm8ujGgHTegDaAhHQI9WxYeT3Zh1fZQoaAZHQIqVsxmCiAVoB03oA2gIR0CPWjkCmuTzdX2UKGgGR0CDOJA5aNdaaAdN6ANoCEdAj3PSWJJoTXV9lChoBkdAhwtBm5DqnmgHTegDaAhHQI94dzjm0Vt1fZQoaAZHQIcb9uLrHENoB03oA2gIR0CPkBzFuNxVdX2UKGgGR0CLEqdilSCOaAdN6ANoCEdAj5VexW1c+3V9lChoBkdAieT1klNUO2gHTegDaAhHQI+3hakhzNl1fZQoaAZHQIwyXDNyHVRoB03oA2gIR0CPvC6DoQnQdX2UKGgGR0CKWfsZYPoWaAdN6ANoCEdAj85YhllK9XV9lChoBkdAiYj9PUKArmgHTegDaAhHQI/R0Udq+Jx1fZQoaAZHQItiJgmZ3LVoB03oA2gIR0CP6mRbKRuCdX2UKGgGR0CKsf0mMOwxaAdN6ANoCEdAj+8Ux20Re3V9lChoBkdAhiL2OyVv/GgHTegDaAhHQJACCVfNRm91fZQoaAZHQIl/RqM3qA1oB03oA2gIR0CQBJ9iMHbAdX2UKGgGR0CKfrCNS619aAdN6ANoCEdAkBgSgkC3gHV9lChoBkdAiqL85Ke05WgHTegDaAhHQJAadu2qkuZ1fZQoaAZHQIrt89KVY6poB03oA2gIR0CQI5WiUPhAdX2UKGgGR0CFVwsRQJokaAdN6ANoCEdAkCU8DKYAsHV9lChoBkdAjHf4BFNL12gHTegDaAhHQJAxgIAwPAh1fZQoaAZHQIm7tpoK2KFoB03oA2gIR0CQM+TWoWHldX2UKGgGR0CMF43YL9deaAdN6ANoCEdAkD0FQZXMhXV9lChoBkdAiZbRXfZVXGgHTegDaAhHQJA+w/4ZdfN1fZQoaAZHQIjyAiqyWzFoB03oA2gIR0CQUbUHpr1vdX2UKGgGR0CKBteLNwBHaAdN6ANoCEdAkFV9V/+bVnV9lChoBkdAi05a9K28ZmgHTegDaAhHQJBe9nQID5l1fZQoaAZHQItTw5q/M4doB03oA2gIR0CQYLbzshPkdX2UKGgGR0CLk26DoQnQaAdN6ANoCEdAkG1fK2a2F3V9lChoBkdAi2oAGKQ7tGgHTegDaAhHQJBvrhVENON1fZQoaAZHQIvGxIQOFxpoB03oA2gIR0CQeSP/JeVtdX2UKGgGR0CIbxOlfqoqaAdN6ANoCEdAkHrjkhib2HV9lChoBkdAjYhxBeHBUWgHTegDaAhHQJCMCij+Jgt1fZQoaAZHQItPPaL4vexoB03oA2gIR0CQj9dYGMXKdX2UKGgGR0CI4zZcs189aAdN6ANoCEdAkJtEt7KJVXV9lChoBkdAiS8WAXl8xGgHTegDaAhHQJCc9O0svqV1fZQoaAZHQIolL6P8yetoB03oA2gIR0CQqYXqJMxodX2UKGgGR0CLWHffoA4oaAdN6ANoCEdAkKvoLgGbC3V9lChoBkdAitL1ZcLSeGgHTegDaAhHQJC1LZwn6VN1fZQoaAZHQIzVz1CgK4RoB03oA2gIR0CQtubp/wy7dX2UKGgGR0CJM8aXKKYRaAdN6ANoCEdAkMXTnA6+4HV9lChoBkdAh0y3jdYW+GgHTegDaAhHQJDJZ67dzn11fZQoaAZHQInvpRKpT/BoB03oA2gIR0CQ1qFa0QbudX2UKGgGR0CNAUGN70FsaAdN6ANoCEdAkNhQgDA8CHV9lChoBkdAiwG3zlLeymgHTegDaAhHQJDkpzo2XLN1fZQoaAZHQIwSMz0pVjtoB03oA2gIR0CQ5wk0Jng6dX2UKGgGR0CKZDswco6TaAdN6ANoCEdAkPBnjIaLoHV9lChoBkdAi2zWs7uDz2gHTegDaAhHQJDyHu1F6Rh1fZQoaAZHQIt5LuBtk4FoB03oA2gIR0CQ/348EFGHdX2UKGgGR0CLwjkgfU4JaAdN6ANoCEdAkQLrL+xW1nV9lChoBkdAjAGiZnctXmgHTegDaAhHQJERL6P8yet1fZQoaAZHQIq7luivgWJoB03oA2gIR0CRE5th/iHZdX2UKGgGR0CMfCzhP0qZaAdN6ANoCEdAkR/xJI1+AnV9lChoBkdAi+h6y8jAz2gHTegDaAhHQJEiXehwl0J1fZQoaAZHQIcXTUmUnohoB03oA2gIR0CRK5tSydFwdX2UKGgGR0CJwSmR/3FlaAdN6ANoCEdAkS1H9zfaYnV9lChoBkdAid+8MVk+YGgHTegDaAhHQJE55a7mMfl1fZQoaAZHQImi7ByjpLVoB03oA2gIR0CRPMcy31BddX2UKGgGR0CJj9lbNbC8aAdN6ANoCEdAkUq4/FBIF3V9lChoBkdAjNA6FVT722gHTegDaAhHQJFNfl+3H7x1fZQoaAZHQIwonck+otNoB03oA2gIR0CRW+onKGL2dX2UKGgGR0CJuRc1O0swaAdN6ANoCEdAkV50nkT6BXV9lChoBkdAitfxy4nWrmgHTegDaAhHQJFnuq94/u91fZQoaAZHQIu0LVUdaMdoB03oA2gIR0CRaas6aLGadX2UKGgGR0CJ3FZuhsZYaAdN6ANoCEdAkXYrI1cdHXV9lChoBkdAiEiKTB68hGgHTegDaAhHQJF4iIRAbAF1fZQoaAZHQIhrVhy8zyloB03oA2gIR0CRhbIgvDgqdX2UKGgGR0CL9+R02cawaAdN6ANoCEdAkYiFLeyiVXV9lChoBkdAjIvkM1CPZWgHTegDaAhHQJGYtpvgm7d1fZQoaAZHQIqdlGy5Zr5oB03oA2gIR0CRmybsF+uvdX2UKGgGR0CEVqt/WlMzaAdN6ANoCEdAkaRk3wTdtXV9lChoBkdAi8OSDRMN+mgHTegDaAhHQJGmHmcOLBN1fZQoaAZHQItBA593KSxoB03oA2gIR0CRspNO/L1VdX2UKGgGR0CH/ULEUCaJaAdN6ANoCEdAkbTcr7O3UnV9lChoBkdAgTzJDVpblmgHTegDaAhHQJHAMS/TLGJ1fZQoaAZHQIrhJYHPeHloB03oA2gIR0CRwtYQarFPdX2UKGgGR0CLMdRceKbbaAdN6ANoCEdAkdSJ97Wuo3V9lChoBkdAiVtZAprk82gHTegDaAhHQJHW6Kbayrx1fZQoaAZHQImsW8wpON5oB03oA2gIR0CR3/hMrVe8dX2UKGgGR0CMgxBppN9IaAdN6ANoCEdAkeHk+HJtBXV9lChoBkdAjDZbrLQokWgHTegDaAhHQJHuFc2R7qp1fZQoaAZHQIo14qmTC+FoB03oA2gIR0CR8HIWP91mdX2UKGgGR0CLsvPOY6XCaAdN6ANoCEdAkfnTH80k4XV9lChoBkdAhwgnPVurImgHTegDaAhHQJH8ZQhwEQp1fZQoaAZHQI0c1y7wrlNoB03oA2gIR0CSD1o60Y0mdX2UKGgGR0CJE/b2USqVaAdN6ANoCEdAkhIBISUTtnV9lChoBkdAiGSfVy3kP2gHTegDaAhHQJIbFsUIsy11fZQoaAZHQIZSvV09yLhoB03oA2gIR0CSHMjhUBGQdX2UKGgGR0CLvdXOnl4kaAdN6ANoCEdAkijRIe5nUXV9lChoBkdAi90nxjJ+2GgHTegDaAhHQJIrHvUjLSx1fZQoaAZHQI1EznvDxb1oB03oA2gIR0CSNBuYx+KCdX2UKGgGR0CLNyOJ+DvmaAdN6ANoCEdAkjXektVaOnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 18750,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42423e0e59fa79b08ca16322be23f405a838bbf762b6323bd0d217e31fc16523
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e1b4bd3f26dfdc3a030725ccfa2eab7117f2dd7780e330ca444e5f035075775
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0ba7fc820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0ba7fc8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0ba7fc940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0ba7fc9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb0ba7fca60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb0ba7fcaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0ba7fcb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0ba7fcc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb0ba7fcca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0ba7fcd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0ba7fcdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0ba7fce50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb0ba9eefc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 600000, "_total_timesteps": 600000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687350309957705871, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEnpF76GvXY/hA2qvXVVb76hKh++9BjRPcZ7sT+OrSo/k9JVP6jFf7wVHkg/zvi2vXQzBMBgi12/6LBjP5cstr59Tku/Qc1APD5uRz3QTVQ9FQvCP9KBLD0nRqK/LxKZvQSdlT775ibA7fPYPncKoD7FD40/QZvJP2KQf7+SLzrA30w0wFcgYz3ZFzS9pgi+PqNqvb8IXci+IQL2PgysQ79tRle/u0UTwPlFsb+WG8E9BVUxv6dylsAQJTC/qolBv+AUNr94Iww+RmgsP7r/Rj4EnZU+mVTEPpUJF8B3CqA+pwGKPwA5A0BwDAXAxxurPTLr1T+DxkY+P+ikvfqC/z4ZAlY/0CZvve9ART9ZEiM+JdIdwHqw37tE8Ci/F36UwFCz7j9B2AA/xVW3v43Fpj+qACVAg6fWPwFvVD+m+Ka9BJ2VPvvmJsDt89g+dwqgPtQMsz6RSss+4qnGPtx7xb1DUIQ+yG9uPQHWxrxEBGu/tIefPQ9zWz7l7Ao/+FAyvS+JOj/JWB8+gwMqPysdMT6rCAc/eaA0Plua5D5R8gw+D6XCPkcarz0b5lM/NIqwvQSdlT6ZVMQ+7fPYPncKoD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAs7Mc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzjEIvgAAAAB9TvS/AAAAAIByoj0AAAAA57z2PwAAAAB3YJY9AAAAAIVs4j8AAAAAKd8QPQAAAADmUOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4Q5tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHWXDj4AAAAAxOrmvwAAAABSPMk9AAAAANxm9D8AAAAABlcMPQAAAAABzNg/AAAAALjC6T0AAAAAbL7ZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJO/irUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDIjI09AAAAAC0Q878AAAAAiXWPvAAAAABgW/0/AAAAAM3JaD0AAAAAs1DzPwAAAAD/+YE8AAAAAGTb978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg5xo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAix+FvQAAAABFNPi/AAAAANntGr0AAAAA8Tb4PwAAAAAbk269AAAAAKZiAEAAAAAAURkMvgAAAAACJO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbnHAqNIbyMAWyUTegDjAF0lEdAjsdO2iL2pXV9lChoBkdAixSiO3lS0mgHTegDaAhHQI7L3o5ggHN1fZQoaAZHQIrjFpEhJRRoB03oA2gIR0CO3gL/CIk7dX2UKGgGR0CKaheUpuuSaAdN6ANoCEdAjuFXxWkrPXV9lChoBkdAinqlPrOZ9mgHTegDaAhHQI765/ustCl1fZQoaAZHQIj9vyCnP3VoB03oA2gIR0CO/7WmP5pKdX2UKGgGR0CKam1FYuCgaAdN6ANoCEdAjxxv69CeE3V9lChoBkdAij2WTPjXF2gHTegDaAhHQI8h+1hLGrF1fZQoaAZHQIum7rJKaodoB03oA2gIR0CPP9zGxUvPdX2UKGgGR0CM5iNOM2m6aAdN6ANoCEdAj0SQ7DEWI3V9lChoBkdAi4l3Dm8ujGgHTegDaAhHQI9WxYeT3Zh1fZQoaAZHQIqVsxmCiAVoB03oA2gIR0CPWjkCmuTzdX2UKGgGR0CDOJA5aNdaaAdN6ANoCEdAj3PSWJJoTXV9lChoBkdAhwtBm5DqnmgHTegDaAhHQI94dzjm0Vt1fZQoaAZHQIcb9uLrHENoB03oA2gIR0CPkBzFuNxVdX2UKGgGR0CLEqdilSCOaAdN6ANoCEdAj5VexW1c+3V9lChoBkdAieT1klNUO2gHTegDaAhHQI+3hakhzNl1fZQoaAZHQIwyXDNyHVRoB03oA2gIR0CPvC6DoQnQdX2UKGgGR0CKWfsZYPoWaAdN6ANoCEdAj85YhllK9XV9lChoBkdAiYj9PUKArmgHTegDaAhHQI/R0Udq+Jx1fZQoaAZHQItiJgmZ3LVoB03oA2gIR0CP6mRbKRuCdX2UKGgGR0CKsf0mMOwxaAdN6ANoCEdAj+8Ux20Re3V9lChoBkdAhiL2OyVv/GgHTegDaAhHQJACCVfNRm91fZQoaAZHQIl/RqM3qA1oB03oA2gIR0CQBJ9iMHbAdX2UKGgGR0CKfrCNS619aAdN6ANoCEdAkBgSgkC3gHV9lChoBkdAiqL85Ke05WgHTegDaAhHQJAadu2qkuZ1fZQoaAZHQIrt89KVY6poB03oA2gIR0CQI5WiUPhAdX2UKGgGR0CFVwsRQJokaAdN6ANoCEdAkCU8DKYAsHV9lChoBkdAjHf4BFNL12gHTegDaAhHQJAxgIAwPAh1fZQoaAZHQIm7tpoK2KFoB03oA2gIR0CQM+TWoWHldX2UKGgGR0CMF43YL9deaAdN6ANoCEdAkD0FQZXMhXV9lChoBkdAiZbRXfZVXGgHTegDaAhHQJA+w/4ZdfN1fZQoaAZHQIjyAiqyWzFoB03oA2gIR0CQUbUHpr1vdX2UKGgGR0CKBteLNwBHaAdN6ANoCEdAkFV9V/+bVnV9lChoBkdAi05a9K28ZmgHTegDaAhHQJBe9nQID5l1fZQoaAZHQItTw5q/M4doB03oA2gIR0CQYLbzshPkdX2UKGgGR0CLk26DoQnQaAdN6ANoCEdAkG1fK2a2F3V9lChoBkdAi2oAGKQ7tGgHTegDaAhHQJBvrhVENON1fZQoaAZHQIvGxIQOFxpoB03oA2gIR0CQeSP/JeVtdX2UKGgGR0CIbxOlfqoqaAdN6ANoCEdAkHrjkhib2HV9lChoBkdAjYhxBeHBUWgHTegDaAhHQJCMCij+Jgt1fZQoaAZHQItPPaL4vexoB03oA2gIR0CQj9dYGMXKdX2UKGgGR0CI4zZcs189aAdN6ANoCEdAkJtEt7KJVXV9lChoBkdAiS8WAXl8xGgHTegDaAhHQJCc9O0svqV1fZQoaAZHQIolL6P8yetoB03oA2gIR0CQqYXqJMxodX2UKGgGR0CLWHffoA4oaAdN6ANoCEdAkKvoLgGbC3V9lChoBkdAitL1ZcLSeGgHTegDaAhHQJC1LZwn6VN1fZQoaAZHQIzVz1CgK4RoB03oA2gIR0CQtubp/wy7dX2UKGgGR0CJM8aXKKYRaAdN6ANoCEdAkMXTnA6+4HV9lChoBkdAh0y3jdYW+GgHTegDaAhHQJDJZ67dzn11fZQoaAZHQInvpRKpT/BoB03oA2gIR0CQ1qFa0QbudX2UKGgGR0CNAUGN70FsaAdN6ANoCEdAkNhQgDA8CHV9lChoBkdAiwG3zlLeymgHTegDaAhHQJDkpzo2XLN1fZQoaAZHQIwSMz0pVjtoB03oA2gIR0CQ5wk0Jng6dX2UKGgGR0CKZDswco6TaAdN6ANoCEdAkPBnjIaLoHV9lChoBkdAi2zWs7uDz2gHTegDaAhHQJDyHu1F6Rh1fZQoaAZHQIt5LuBtk4FoB03oA2gIR0CQ/348EFGHdX2UKGgGR0CLwjkgfU4JaAdN6ANoCEdAkQLrL+xW1nV9lChoBkdAjAGiZnctXmgHTegDaAhHQJERL6P8yet1fZQoaAZHQIq7luivgWJoB03oA2gIR0CRE5th/iHZdX2UKGgGR0CMfCzhP0qZaAdN6ANoCEdAkR/xJI1+AnV9lChoBkdAi+h6y8jAz2gHTegDaAhHQJEiXehwl0J1fZQoaAZHQIcXTUmUnohoB03oA2gIR0CRK5tSydFwdX2UKGgGR0CJwSmR/3FlaAdN6ANoCEdAkS1H9zfaYnV9lChoBkdAid+8MVk+YGgHTegDaAhHQJE55a7mMfl1fZQoaAZHQImi7ByjpLVoB03oA2gIR0CRPMcy31BddX2UKGgGR0CJj9lbNbC8aAdN6ANoCEdAkUq4/FBIF3V9lChoBkdAjNA6FVT722gHTegDaAhHQJFNfl+3H7x1fZQoaAZHQIwonck+otNoB03oA2gIR0CRW+onKGL2dX2UKGgGR0CJuRc1O0swaAdN6ANoCEdAkV50nkT6BXV9lChoBkdAitfxy4nWrmgHTegDaAhHQJFnuq94/u91fZQoaAZHQIu0LVUdaMdoB03oA2gIR0CRaas6aLGadX2UKGgGR0CJ3FZuhsZYaAdN6ANoCEdAkXYrI1cdHXV9lChoBkdAiEiKTB68hGgHTegDaAhHQJF4iIRAbAF1fZQoaAZHQIhrVhy8zyloB03oA2gIR0CRhbIgvDgqdX2UKGgGR0CL9+R02cawaAdN6ANoCEdAkYiFLeyiVXV9lChoBkdAjIvkM1CPZWgHTegDaAhHQJGYtpvgm7d1fZQoaAZHQIqdlGy5Zr5oB03oA2gIR0CRmybsF+uvdX2UKGgGR0CEVqt/WlMzaAdN6ANoCEdAkaRk3wTdtXV9lChoBkdAi8OSDRMN+mgHTegDaAhHQJGmHmcOLBN1fZQoaAZHQItBA593KSxoB03oA2gIR0CRspNO/L1VdX2UKGgGR0CH/ULEUCaJaAdN6ANoCEdAkbTcr7O3UnV9lChoBkdAgTzJDVpblmgHTegDaAhHQJHAMS/TLGJ1fZQoaAZHQIrhJYHPeHloB03oA2gIR0CRwtYQarFPdX2UKGgGR0CLMdRceKbbaAdN6ANoCEdAkdSJ97Wuo3V9lChoBkdAiVtZAprk82gHTegDaAhHQJHW6Kbayrx1fZQoaAZHQImsW8wpON5oB03oA2gIR0CR3/hMrVe8dX2UKGgGR0CMgxBppN9IaAdN6ANoCEdAkeHk+HJtBXV9lChoBkdAjDZbrLQokWgHTegDaAhHQJHuFc2R7qp1fZQoaAZHQIo14qmTC+FoB03oA2gIR0CR8HIWP91mdX2UKGgGR0CLsvPOY6XCaAdN6ANoCEdAkfnTH80k4XV9lChoBkdAhwgnPVurImgHTegDaAhHQJH8ZQhwEQp1fZQoaAZHQI0c1y7wrlNoB03oA2gIR0CSD1o60Y0mdX2UKGgGR0CJE/b2USqVaAdN6ANoCEdAkhIBISUTtnV9lChoBkdAiGSfVy3kP2gHTegDaAhHQJIbFsUIsy11fZQoaAZHQIZSvV09yLhoB03oA2gIR0CSHMjhUBGQdX2UKGgGR0CLvdXOnl4kaAdN6ANoCEdAkijRIe5nUXV9lChoBkdAi90nxjJ+2GgHTegDaAhHQJIrHvUjLSx1fZQoaAZHQI1EznvDxb1oB03oA2gIR0CSNBuYx+KCdX2UKGgGR0CLNyOJ+DvmaAdN6ANoCEdAkjXektVaOnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 18750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (320 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 879.9738036110997, "std_reward": 52.08648372905424, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-21T12:47:20.726607"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:940534bb3c43e0c26b930ee820bdb9d44f4b62e28a7936dbf89f6f850eaacaef
3
+ size 2176