Bohanlu commited on
Commit
08c3df7
1 Parent(s): 6516b52

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ ---
4
+ <p align="center">
5
+ <img src="https://github.com/lbh0830/TW-Hokkien-LLM/blob/main/pics/logo.jpg?raw=true" alt="Taigi-llama-logo" width="350">
6
+ </p>
7
+
8
+ # Model Card for Taigi-Llama-2-13B
9
+ Taigi-Llama-2 series are built based on the Traditional Chinese version of the LLaMA-2 model. We conducted continued pre-training on web-scraped data in Taiwanese Hokkien, including Hanzi, POJ, and Hanlo, totaling around 78MB.
10
+
11
+ For more details, please refer to our [GitHub repository](https://github.com/lbh0830/TW-Hokkien-LLM/tree/main) and the paper: [Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems](https://arxiv.org/abs/2403.12024)
12
+
13
+ Explore other models and datasets in the [Taiwanese Hokkien LLM collection](https://huggingface.co/collections/Bohanlu/taiwanese-hokkien-llm-6614ba7456e6789bc2f10ca0).
14
+
15
+ ## Model description
16
+
17
+ - **Usage:** This model can be used for causal language modeling tasks in Taiwanese Hokkien. It is also suitable for further fine-tuning on specific datasets for downstream tasks.
18
+ - **Language(s) (NLP):** The primary language is Taiwanese Hokkien (Hanzi and POJ). The model also retains capabilities in English and Mandarin Chinese due to prior pre-training.
19
+ - **Input:** Text
20
+ - **Output:** Text
21
+ - **Model Size:** 13B parameters
22
+
23
+ ## Usage Example
24
+ ```
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline
26
+ import torch
27
+ import accelerate
28
+
29
+ def get_pipeline(path:str, tokenizer:AutoTokenizer, accelerator:accelerate.Accelerator) -> TextGenerationPipeline:
30
+ model = AutoModelForCausalLM.from_pretrained(
31
+ path, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True)
32
+
33
+ terminators = [tokenizer.eos_token_id, tokenizer.pad_token_id]
34
+
35
+ pipeline = TextGenerationPipeline(model = model, tokenizer = tokenizer, num_workers=accelerator.state.num_processes*4, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators)
36
+
37
+ return pipeline
38
+
39
+ model_dir = "Bohanlu/Taigi-Llama-2-7B" # or Bohanlu/Taigi-Llama-2-13B for the 13B model
40
+ tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False)
41
+
42
+ accelerator = accelerate.Accelerator()
43
+ pipe = get_pipeline(model_dir, tokenizer, accelerator)
44
+
45
+ # Few-shot示例:問答
46
+ qa_prompt = """Example 1:
47
+ 問題:台北101有偌懸?
48
+ 答案:台北101的高度是五百空八公尺。
49
+
50
+ Example 2:
51
+ 問題:台灣上長的溪仔是佗一條?
52
+ 答案:台灣上長的溪仔是濁水溪,規个長度有百八公里遐爾長。
53
+
54
+ Example 3:
55
+ 問題:臺灣上懸的山是啥物?
56
+ 答案:"""
57
+
58
+ print(pipe(qa_prompt, return_full_text=False))
59
+ >>> [{'generated_text': '臺灣上懸的山是玉山,海拔三千九百五十二公尺。'}]
60
+ ```
61
+
62
+ ## Citation
63
+
64
+ If you find the resources in the Taiwanese Hokkien LLM collection useful in your work, please cite it using the following reference:
65
+
66
+ ```
67
+ @misc{lu2024enhancing,
68
+ title={Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems},
69
+ author={Bo-Han Lu and Yi-Hsuan Lin and En-Shiun Annie Lee and Richard Tzong-Han Tsai},
70
+ year={2024},
71
+ eprint={2403.12024},
72
+ archivePrefix={arXiv},
73
+ primaryClass={cs.CL}
74
+ }
75
+ ```