--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - Image Regression datasets: - "BrownEnergy/secchi_depth" metrics: - accuracy model-index: - name: "sd_depth_regression_v2" results: [] --- # sd_depth_regression_v2 ## Image Regression Model This model was trained with [Image Regression Model Trainer](https://github.com/TonyAssi/ImageRegression/tree/main). It takes an image as input and outputs a float value. ```python from ImageRegression import predict predict(repo_id='BrownEnergy/sd_depth_regression_v2',image_path='image.jpg') ``` --- ## Dataset Dataset: BrownEnergy/secchi_depth\ Value Column: 'sd_depth'\ Train Test Split: 0.05 --- ## Training Base Model: [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)\ Epochs: 10\ Learning Rate: 0.0001 --- ## Usage ### Download ```bash git clone https://github.com/TonyAssi/ImageRegression.git cd ImageRegression ``` ### Installation ```bash pip install -r requirements.txt ``` ### Import ```python from ImageRegression import train_model, upload_model, predict ``` ### Inference (Prediction) - **repo_id** 🤗 repo id of the model - **image_path** path to image ```python predict(repo_id='BrownEnergy/sd_depth_regression_v2', image_path='image.jpg') ``` The first time this function is called it'll download the safetensor model. Subsequent function calls will run faster. ### Train Model - **dataset_id** 🤗 dataset id - **value_column_name** column name of prediction values in dataset - **test_split** test split of the train/test split - **output_dir** the directory where the checkpoints will be saved - **num_train_epochs** training epochs - **learning_rate** learning rate ```python train_model(dataset_id='BrownEnergy/secchi_depth', value_column_name='sd_depth', test_split=0.05, output_dir='./results', num_train_epochs=10, learning_rate=0.0001) ``` The trainer will save the checkpoints in the output_dir location. The model.safetensors are the trained weights you'll use for inference (predicton). ### Upload Model This function will upload your model to the 🤗 Hub. - **model_id** the name of the model id - **token** go [here](https://huggingface.co/settings/tokens) to create a new 🤗 token - **checkpoint_dir** checkpoint folder that will be uploaded ```python upload_model(model_id='sd_depth_regression_v2', token='YOUR_HF_TOKEN', checkpoint_dir='./results/checkpoint-940') ```