update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: vowelizer_1203_v12
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# vowelizer_1203_v12
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [Buseak/vowelizer_1203_v11](https://huggingface.co/Buseak/vowelizer_1203_v11) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0000
|
23 |
+
- Precision: 1.0000
|
24 |
+
- Recall: 1.0000
|
25 |
+
- F1: 1.0000
|
26 |
+
- Accuracy: 1.0000
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0493 | 1.0 | 967 | 0.0219 | 0.9936 | 0.9889 | 0.9913 | 0.9943 |
|
58 |
+
| 0.0299 | 2.0 | 1934 | 0.0112 | 0.9964 | 0.9952 | 0.9958 | 0.9971 |
|
59 |
+
| 0.0197 | 3.0 | 2901 | 0.0064 | 0.9980 | 0.9972 | 0.9976 | 0.9984 |
|
60 |
+
| 0.0143 | 4.0 | 3868 | 0.0039 | 0.9988 | 0.9984 | 0.9986 | 0.9990 |
|
61 |
+
| 0.0113 | 5.0 | 4835 | 0.0025 | 0.9990 | 0.9990 | 0.9990 | 0.9994 |
|
62 |
+
| 0.0094 | 6.0 | 5802 | 0.0017 | 0.9993 | 0.9993 | 0.9993 | 0.9996 |
|
63 |
+
| 0.0074 | 7.0 | 6769 | 0.0013 | 0.9993 | 0.9994 | 0.9994 | 0.9997 |
|
64 |
+
| 0.0063 | 8.0 | 7736 | 0.0007 | 0.9997 | 0.9996 | 0.9997 | 0.9998 |
|
65 |
+
| 0.0055 | 9.0 | 8703 | 0.0006 | 0.9997 | 0.9998 | 0.9997 | 0.9999 |
|
66 |
+
| 0.0045 | 10.0 | 9670 | 0.0004 | 0.9997 | 0.9998 | 0.9998 | 0.9999 |
|
67 |
+
| 0.0039 | 11.0 | 10637 | 0.0003 | 0.9998 | 0.9999 | 0.9999 | 0.9999 |
|
68 |
+
| 0.0031 | 12.0 | 11604 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 1.0000 |
|
69 |
+
| 0.0028 | 13.0 | 12571 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 1.0000 |
|
70 |
+
| 0.0023 | 14.0 | 13538 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
71 |
+
| 0.002 | 15.0 | 14505 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
72 |
+
| 0.0019 | 16.0 | 15472 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
73 |
+
| 0.0017 | 17.0 | 16439 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
74 |
+
| 0.0014 | 18.0 | 17406 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
75 |
+
| 0.0013 | 19.0 | 18373 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
76 |
+
| 0.0011 | 20.0 | 19340 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0
|
82 |
+
- Pytorch 2.2.1+cu121
|
83 |
+
- Datasets 2.18.0
|
84 |
+
- Tokenizers 0.13.3
|