Buseak commited on
Commit
f27ae87
1 Parent(s): 6294f3a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: vowelizer_1203_v8
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # vowelizer_1203_v8
19
+
20
+ This model is a fine-tuned version of [Buseak/vowelizer_1203_v6](https://huggingface.co/Buseak/vowelizer_1203_v6) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0001
23
+ - Precision: 1.0000
24
+ - Recall: 1.0000
25
+ - F1: 1.0000
26
+ - Accuracy: 1.0000
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0731 | 1.0 | 967 | 0.0292 | 0.9860 | 0.9750 | 0.9805 | 0.9908 |
58
+ | 0.0462 | 2.0 | 1934 | 0.0171 | 0.9916 | 0.9850 | 0.9883 | 0.9945 |
59
+ | 0.0327 | 3.0 | 2901 | 0.0104 | 0.9950 | 0.9907 | 0.9929 | 0.9967 |
60
+ | 0.0243 | 4.0 | 3868 | 0.0063 | 0.9968 | 0.9953 | 0.9960 | 0.9981 |
61
+ | 0.0197 | 5.0 | 4835 | 0.0042 | 0.9979 | 0.9968 | 0.9973 | 0.9987 |
62
+ | 0.0159 | 6.0 | 5802 | 0.0031 | 0.9981 | 0.9979 | 0.9980 | 0.9991 |
63
+ | 0.0132 | 7.0 | 6769 | 0.0018 | 0.9990 | 0.9985 | 0.9988 | 0.9995 |
64
+ | 0.0115 | 8.0 | 7736 | 0.0014 | 0.9991 | 0.9991 | 0.9991 | 0.9996 |
65
+ | 0.0097 | 9.0 | 8703 | 0.0010 | 0.9994 | 0.9994 | 0.9994 | 0.9997 |
66
+ | 0.0082 | 10.0 | 9670 | 0.0007 | 0.9996 | 0.9995 | 0.9996 | 0.9998 |
67
+ | 0.0066 | 11.0 | 10637 | 0.0005 | 0.9998 | 0.9997 | 0.9998 | 0.9999 |
68
+ | 0.006 | 12.0 | 11604 | 0.0004 | 0.9998 | 0.9998 | 0.9998 | 0.9999 |
69
+ | 0.0055 | 13.0 | 12571 | 0.0003 | 0.9997 | 0.9997 | 0.9997 | 0.9999 |
70
+ | 0.0047 | 14.0 | 13538 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 1.0000 |
71
+ | 0.004 | 15.0 | 14505 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 1.0000 |
72
+ | 0.0034 | 16.0 | 15472 | 0.0001 | 0.9999 | 0.9999 | 0.9999 | 1.0000 |
73
+ | 0.0032 | 17.0 | 16439 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
74
+ | 0.003 | 18.0 | 17406 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
75
+ | 0.0027 | 19.0 | 18373 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
76
+ | 0.0024 | 20.0 | 19340 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.28.0
82
+ - Pytorch 2.2.1+cu121
83
+ - Datasets 2.18.0
84
+ - Tokenizers 0.13.3