Byanka commited on
Commit
2a96118
·
1 Parent(s): 3291075

commit from cp20

Browse files
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
221
+ ## Training procedure
222
+
223
+
224
+ The following `bitsandbytes` quantization config was used during training:
225
+ - quant_method: bitsandbytes
226
+ - load_in_8bit: False
227
+ - load_in_4bit: True
228
+ - llm_int8_threshold: 6.0
229
+ - llm_int8_skip_modules: None
230
+ - llm_int8_enable_fp32_cpu_offload: False
231
+ - llm_int8_has_fp16_weight: False
232
+ - bnb_4bit_quant_type: nf4
233
+ - bnb_4bit_use_double_quant: True
234
+ - bnb_4bit_compute_dtype: bfloat16
235
+
236
+ ### Framework versions
237
+
238
+
239
+ - PEFT 0.6.2
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "v_proj",
24
+ "gate_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb7793cfee46859cf005659f6a618626e6164551b8c340dbf36f65c706e9c9f3
3
+ size 80013120
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd994ab68447afb4a3a66a3bb79f4eb6a3474461c7e85c68912bf25457cc3d75
3
+ size 40570324
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:051f5b689ad62135c25fa5045bbffb4eedd459e9a5920b5b06598c940d17097b
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b4450784d4cf6a42c3a2d631d0bd490dc81d048f5ff5f0922d6a2ccd4b11f61
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
30
+ "clean_up_tokenization_spaces": false,
31
+ "eos_token": "</s>",
32
+ "legacy": false,
33
+ "model_max_length": 1000000000000000019884624838656,
34
+ "pad_token": "</s>",
35
+ "padding_side": "right",
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "LlamaTokenizer",
38
+ "unk_token": "<unk>",
39
+ "use_default_system_prompt": false
40
+ }
trainer_state.json ADDED
@@ -0,0 +1,763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.4044392108917236,
3
+ "best_model_checkpoint": "outputs_llama-2/checkpoint-120",
4
+ "epoch": 0.18511376783648284,
5
+ "eval_steps": 40,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 3.4868,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 3.7961,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 3.9117,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8e-05,
32
+ "loss": 3.5057,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001,
38
+ "loss": 3.2378,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.00012,
44
+ "loss": 3.0761,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00014,
50
+ "loss": 3.3794,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.00016,
56
+ "loss": 2.728,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 0.00018,
62
+ "loss": 2.5244,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0002,
68
+ "loss": 2.47,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.00019968652037617558,
74
+ "loss": 2.5237,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.0001993730407523511,
80
+ "loss": 2.3919,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.00019905956112852667,
86
+ "loss": 1.9547,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0001987460815047022,
92
+ "loss": 1.8513,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 0.00019843260188087775,
98
+ "loss": 1.6401,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.02,
103
+ "learning_rate": 0.0001981191222570533,
104
+ "loss": 1.7872,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.00019780564263322884,
110
+ "loss": 1.8782,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0001974921630094044,
116
+ "loss": 1.8139,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.00019717868338557995,
122
+ "loss": 1.5255,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 0.0001968652037617555,
128
+ "loss": 1.326,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 0.00019655172413793104,
134
+ "loss": 1.7972,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.03,
139
+ "learning_rate": 0.0001962382445141066,
140
+ "loss": 1.4295,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.00019592476489028212,
146
+ "loss": 1.6369,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0001956112852664577,
152
+ "loss": 1.7473,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.00019529780564263324,
158
+ "loss": 1.6524,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 0.00019498432601880878,
164
+ "loss": 1.5889,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 0.00019467084639498435,
170
+ "loss": 1.3206,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "learning_rate": 0.00019435736677115987,
176
+ "loss": 1.9595,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.04,
181
+ "learning_rate": 0.00019404388714733544,
182
+ "loss": 1.5356,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.00019373040752351098,
188
+ "loss": 1.932,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.00019341692789968652,
194
+ "loss": 1.3679,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 0.0001931034482758621,
200
+ "loss": 1.5176,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 0.0001927899686520376,
206
+ "loss": 1.774,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.05,
211
+ "learning_rate": 0.00019247648902821318,
212
+ "loss": 1.4211,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "learning_rate": 0.00019216300940438872,
218
+ "loss": 2.0095,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.00019184952978056427,
224
+ "loss": 1.1123,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 0.0001915360501567398,
230
+ "loss": 1.5061,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 0.00019122257053291538,
236
+ "loss": 1.8059,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 0.00019090909090909092,
242
+ "loss": 1.361,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.06,
247
+ "learning_rate": 0.00019059561128526647,
248
+ "loss": 1.6624,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.06,
253
+ "eval_loss": 1.4508017301559448,
254
+ "eval_runtime": 866.2645,
255
+ "eval_samples_per_second": 1.16,
256
+ "eval_steps_per_second": 1.16,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.06,
261
+ "learning_rate": 0.000190282131661442,
262
+ "loss": 1.0086,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.06,
267
+ "learning_rate": 0.00018996865203761755,
268
+ "loss": 1.8394,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "learning_rate": 0.00018965517241379312,
274
+ "loss": 1.595,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.07,
279
+ "learning_rate": 0.00018934169278996866,
280
+ "loss": 1.4083,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.07,
285
+ "learning_rate": 0.0001890282131661442,
286
+ "loss": 1.6845,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.07,
291
+ "learning_rate": 0.00018871473354231978,
292
+ "loss": 1.2298,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.07,
297
+ "learning_rate": 0.0001884012539184953,
298
+ "loss": 1.0909,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.07,
303
+ "learning_rate": 0.00018808777429467086,
304
+ "loss": 1.1942,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.08,
309
+ "learning_rate": 0.0001877742946708464,
310
+ "loss": 1.7951,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "learning_rate": 0.00018746081504702195,
316
+ "loss": 1.5837,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.08,
321
+ "learning_rate": 0.00018714733542319752,
322
+ "loss": 1.1171,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.08,
327
+ "learning_rate": 0.00018683385579937304,
328
+ "loss": 1.5556,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.08,
333
+ "learning_rate": 0.0001865203761755486,
334
+ "loss": 1.6377,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.08,
339
+ "learning_rate": 0.00018620689655172415,
340
+ "loss": 1.7227,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.08,
345
+ "learning_rate": 0.0001858934169278997,
346
+ "loss": 1.6148,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.09,
351
+ "learning_rate": 0.00018557993730407524,
352
+ "loss": 1.1987,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.09,
357
+ "learning_rate": 0.0001852664576802508,
358
+ "loss": 0.8116,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.09,
363
+ "learning_rate": 0.00018495297805642635,
364
+ "loss": 1.627,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.09,
369
+ "learning_rate": 0.0001846394984326019,
370
+ "loss": 1.3519,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.09,
375
+ "learning_rate": 0.00018432601880877744,
376
+ "loss": 1.1224,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.09,
381
+ "learning_rate": 0.00018401253918495298,
382
+ "loss": 1.4279,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.1,
387
+ "learning_rate": 0.00018369905956112855,
388
+ "loss": 1.3011,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.1,
393
+ "learning_rate": 0.00018338557993730406,
394
+ "loss": 1.654,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "learning_rate": 0.00018307210031347963,
400
+ "loss": 0.8621,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.1,
405
+ "learning_rate": 0.00018275862068965518,
406
+ "loss": 1.3778,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.1,
411
+ "learning_rate": 0.00018244514106583072,
412
+ "loss": 1.7181,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.1,
417
+ "learning_rate": 0.0001821316614420063,
418
+ "loss": 1.603,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.1,
423
+ "learning_rate": 0.00018181818181818183,
424
+ "loss": 1.3475,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.11,
429
+ "learning_rate": 0.00018150470219435738,
430
+ "loss": 1.7242,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.11,
435
+ "learning_rate": 0.00018119122257053292,
436
+ "loss": 1.58,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.11,
441
+ "learning_rate": 0.00018087774294670846,
442
+ "loss": 1.4371,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.11,
447
+ "learning_rate": 0.00018056426332288403,
448
+ "loss": 1.3795,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.11,
453
+ "learning_rate": 0.00018025078369905958,
454
+ "loss": 1.1421,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.11,
459
+ "learning_rate": 0.00017993730407523512,
460
+ "loss": 1.1617,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.12,
465
+ "learning_rate": 0.00017962382445141066,
466
+ "loss": 1.4031,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.12,
471
+ "learning_rate": 0.0001793103448275862,
472
+ "loss": 2.0192,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.12,
477
+ "learning_rate": 0.00017899686520376175,
478
+ "loss": 1.4762,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.12,
483
+ "learning_rate": 0.00017868338557993732,
484
+ "loss": 1.4992,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.12,
489
+ "learning_rate": 0.00017836990595611286,
490
+ "loss": 1.5983,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.12,
495
+ "learning_rate": 0.0001780564263322884,
496
+ "loss": 1.3888,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.12,
501
+ "eval_loss": 1.416973352432251,
502
+ "eval_runtime": 866.3924,
503
+ "eval_samples_per_second": 1.16,
504
+ "eval_steps_per_second": 1.16,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 0.12,
509
+ "learning_rate": 0.00017774294670846398,
510
+ "loss": 1.0799,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 0.13,
515
+ "learning_rate": 0.0001774294670846395,
516
+ "loss": 1.3961,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 0.13,
521
+ "learning_rate": 0.00017711598746081506,
522
+ "loss": 1.5792,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 0.13,
527
+ "learning_rate": 0.0001768025078369906,
528
+ "loss": 1.6384,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 0.13,
533
+ "learning_rate": 0.00017648902821316615,
534
+ "loss": 1.3299,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 0.13,
539
+ "learning_rate": 0.00017617554858934172,
540
+ "loss": 1.7483,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 0.13,
545
+ "learning_rate": 0.00017586206896551723,
546
+ "loss": 1.7161,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 0.14,
551
+ "learning_rate": 0.0001755485893416928,
552
+ "loss": 1.3523,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 0.14,
557
+ "learning_rate": 0.00017523510971786835,
558
+ "loss": 1.5451,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 0.14,
563
+ "learning_rate": 0.0001749216300940439,
564
+ "loss": 1.4589,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 0.14,
569
+ "learning_rate": 0.00017460815047021943,
570
+ "loss": 1.4352,
571
+ "step": 91
572
+ },
573
+ {
574
+ "epoch": 0.14,
575
+ "learning_rate": 0.000174294670846395,
576
+ "loss": 1.5711,
577
+ "step": 92
578
+ },
579
+ {
580
+ "epoch": 0.14,
581
+ "learning_rate": 0.00017398119122257055,
582
+ "loss": 1.3834,
583
+ "step": 93
584
+ },
585
+ {
586
+ "epoch": 0.15,
587
+ "learning_rate": 0.0001736677115987461,
588
+ "loss": 1.3734,
589
+ "step": 94
590
+ },
591
+ {
592
+ "epoch": 0.15,
593
+ "learning_rate": 0.00017335423197492163,
594
+ "loss": 1.5402,
595
+ "step": 95
596
+ },
597
+ {
598
+ "epoch": 0.15,
599
+ "learning_rate": 0.00017304075235109718,
600
+ "loss": 1.5848,
601
+ "step": 96
602
+ },
603
+ {
604
+ "epoch": 0.15,
605
+ "learning_rate": 0.00017272727272727275,
606
+ "loss": 1.3129,
607
+ "step": 97
608
+ },
609
+ {
610
+ "epoch": 0.15,
611
+ "learning_rate": 0.00017241379310344826,
612
+ "loss": 1.3945,
613
+ "step": 98
614
+ },
615
+ {
616
+ "epoch": 0.15,
617
+ "learning_rate": 0.00017210031347962383,
618
+ "loss": 1.79,
619
+ "step": 99
620
+ },
621
+ {
622
+ "epoch": 0.15,
623
+ "learning_rate": 0.0001717868338557994,
624
+ "loss": 1.0874,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 0.16,
629
+ "learning_rate": 0.00017147335423197492,
630
+ "loss": 1.617,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 0.16,
635
+ "learning_rate": 0.0001711598746081505,
636
+ "loss": 1.259,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 0.16,
641
+ "learning_rate": 0.00017084639498432603,
642
+ "loss": 1.577,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 0.16,
647
+ "learning_rate": 0.00017053291536050158,
648
+ "loss": 1.3163,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 0.16,
653
+ "learning_rate": 0.00017021943573667712,
654
+ "loss": 1.3077,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 0.16,
659
+ "learning_rate": 0.00016990595611285266,
660
+ "loss": 1.2611,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 0.17,
665
+ "learning_rate": 0.00016959247648902823,
666
+ "loss": 1.8003,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 0.17,
671
+ "learning_rate": 0.00016927899686520377,
672
+ "loss": 1.3783,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 0.17,
677
+ "learning_rate": 0.00016896551724137932,
678
+ "loss": 1.3896,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 0.17,
683
+ "learning_rate": 0.00016865203761755486,
684
+ "loss": 1.4663,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 0.17,
689
+ "learning_rate": 0.0001683385579937304,
690
+ "loss": 0.7607,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 0.17,
695
+ "learning_rate": 0.00016802507836990597,
696
+ "loss": 0.9899,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 0.17,
701
+ "learning_rate": 0.00016771159874608152,
702
+ "loss": 1.8002,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 0.18,
707
+ "learning_rate": 0.00016739811912225706,
708
+ "loss": 1.5776,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 0.18,
713
+ "learning_rate": 0.0001670846394984326,
714
+ "loss": 1.551,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 0.18,
719
+ "learning_rate": 0.00016677115987460817,
720
+ "loss": 1.4058,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 0.18,
725
+ "learning_rate": 0.0001664576802507837,
726
+ "loss": 1.0475,
727
+ "step": 117
728
+ },
729
+ {
730
+ "epoch": 0.18,
731
+ "learning_rate": 0.00016614420062695926,
732
+ "loss": 1.7153,
733
+ "step": 118
734
+ },
735
+ {
736
+ "epoch": 0.18,
737
+ "learning_rate": 0.0001658307210031348,
738
+ "loss": 1.6289,
739
+ "step": 119
740
+ },
741
+ {
742
+ "epoch": 0.19,
743
+ "learning_rate": 0.00016551724137931035,
744
+ "loss": 1.2282,
745
+ "step": 120
746
+ },
747
+ {
748
+ "epoch": 0.19,
749
+ "eval_loss": 1.4044392108917236,
750
+ "eval_runtime": 866.8231,
751
+ "eval_samples_per_second": 1.159,
752
+ "eval_steps_per_second": 1.159,
753
+ "step": 120
754
+ }
755
+ ],
756
+ "logging_steps": 1,
757
+ "max_steps": 648,
758
+ "num_train_epochs": 1,
759
+ "save_steps": 40,
760
+ "total_flos": 5831985971159040.0,
761
+ "trial_name": null,
762
+ "trial_params": null
763
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa695419d71e55274d2eff4eb4657658e7280067a9a129f0daacb8143ad8f774
3
+ size 4536