--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-v3-base_finetuned_bluegennx_run2.21_3e results: [] --- # deberta-v3-base_finetuned_bluegennx_run2.21_3e This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0168 - Overall Precision: 0.9773 - Overall Recall: 0.9878 - Overall F1: 0.9825 - Overall Accuracy: 0.9959 - Aadhar Card F1: 0.9866 - Age F1: 0.9707 - City F1: 0.9868 - Country F1: 0.9865 - Creditcardcvv F1: 0.9888 - Creditcardnumber F1: 0.9587 - Date F1: 0.9643 - Dateofbirth F1: 0.9165 - Email F1: 0.9894 - Expirydate F1: 0.9921 - Organization F1: 0.9917 - Pan Card F1: 0.9856 - Person F1: 0.9883 - Phonenumber F1: 0.9868 - Pincode F1: 0.9936 - Secondaryaddress F1: 0.9861 - State F1: 0.9901 - Time F1: 0.9821 - Url F1: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Aadhar Card F1 | Age F1 | City F1 | Country F1 | Creditcardcvv F1 | Creditcardnumber F1 | Date F1 | Dateofbirth F1 | Email F1 | Expirydate F1 | Organization F1 | Pan Card F1 | Person F1 | Phonenumber F1 | Pincode F1 | Secondaryaddress F1 | State F1 | Time F1 | Url F1 | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:------:|:-------:|:----------:|:----------------:|:-------------------:|:-------:|:--------------:|:--------:|:-------------:|:---------------:|:-----------:|:---------:|:--------------:|:----------:|:-------------------:|:--------:|:-------:|:------:| | 0.0308 | 1.0 | 16005 | 0.0359 | 0.9500 | 0.9755 | 0.9626 | 0.9920 | 0.9350 | 0.9315 | 0.9658 | 0.9706 | 0.9631 | 0.9282 | 0.9251 | 0.8430 | 0.9719 | 0.9842 | 0.9866 | 0.9696 | 0.9772 | 0.9503 | 0.9835 | 0.9680 | 0.9815 | 0.9739 | 0.9845 | | 0.0202 | 2.0 | 32010 | 0.0195 | 0.9737 | 0.9836 | 0.9786 | 0.9950 | 0.9756 | 0.9586 | 0.9790 | 0.9826 | 0.9866 | 0.9497 | 0.9593 | 0.9060 | 0.9893 | 0.9872 | 0.9902 | 0.9716 | 0.9875 | 0.9830 | 0.9939 | 0.9831 | 0.9871 | 0.9799 | 0.9927 | | 0.0107 | 3.0 | 48015 | 0.0168 | 0.9773 | 0.9878 | 0.9825 | 0.9959 | 0.9866 | 0.9707 | 0.9868 | 0.9865 | 0.9888 | 0.9587 | 0.9643 | 0.9165 | 0.9894 | 0.9921 | 0.9917 | 0.9856 | 0.9883 | 0.9868 | 0.9936 | 0.9861 | 0.9901 | 0.9821 | 0.9949 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1