Go Inoue commited on
Commit
11e7a2c
1 Parent(s): ea2da6e
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -6,7 +6,7 @@ widget:
6
  - text: "الهدف من الحياة هو [MASK] ."
7
  ---
8
 
9
- # bert-base-camelbert-msa
10
 
11
  ## Model description
12
 
@@ -36,7 +36,7 @@ We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
36
  You can use this model directly with a pipeline for masked language modeling:
37
  ```python
38
  >>> from transformers import pipeline
39
- >>> unmasker = pipeline('fill-mask', model='bert-base-camelbert-mix')
40
  >>> unmasker("الهدف من الحياة هو [MASK] .")
41
  [{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
42
  'score': 0.10861027985811234,
@@ -63,8 +63,8 @@ You can use this model directly with a pipeline for masked language modeling:
63
  Here is how to use this model to get the features of a given text in PyTorch:
64
  ```python
65
  from transformers import AutoTokenizer, AutoModel
66
- tokenizer = AutoTokenizer.from_pretrained('bert-base-camelbert-mix')
67
- model = AutoModel.from_pretrained('bert-base-camelbert-mix')
68
  text = "مرحبا يا عالم."
69
  encoded_input = tokenizer(text, return_tensors='pt')
70
  output = model(**encoded_input)
@@ -73,8 +73,8 @@ output = model(**encoded_input)
73
  and in TensorFlow:
74
  ```python
75
  from transformers import AutoTokenizer, TFAutoModel
76
- tokenizer = AutoTokenizer.from_pretrained('bert-base-camelbert-mix')
77
- model = TFAutoModel.from_pretrained('bert-base-camelbert-mix')
78
  text = "مرحبا يا عالم."
79
  encoded_input = tokenizer(text, return_tensors='tf')
80
  output = model(encoded_input)
 
6
  - text: "الهدف من الحياة هو [MASK] ."
7
  ---
8
 
9
+ # CAMeLBERT-Mix
10
 
11
  ## Model description
12
 
 
36
  You can use this model directly with a pipeline for masked language modeling:
37
  ```python
38
  >>> from transformers import pipeline
39
+ >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-mix')
40
  >>> unmasker("الهدف من الحياة هو [MASK] .")
41
  [{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
42
  'score': 0.10861027985811234,
 
63
  Here is how to use this model to get the features of a given text in PyTorch:
64
  ```python
65
  from transformers import AutoTokenizer, AutoModel
66
+ tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
67
+ model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
68
  text = "مرحبا يا عالم."
69
  encoded_input = tokenizer(text, return_tensors='pt')
70
  output = model(**encoded_input)
 
73
  and in TensorFlow:
74
  ```python
75
  from transformers import AutoTokenizer, TFAutoModel
76
+ tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
77
+ model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
78
  text = "مرحبا يا عالم."
79
  encoded_input = tokenizer(text, return_tensors='tf')
80
  output = model(encoded_input)