File size: 12,288 Bytes
0743270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import torch
import math
from torch.optim import Optimizer
from torch.optim.optimizer import _default_to_fused_or_foreach
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
from typing import Iterable, Tuple
from torch import nn, Tensor
class AdamWScale(Optimizer):
"""
This AdamW implementation is copied from Huggingface.
We modified it with Adagrad scaling by rms of a weight tensor
Implements Adam algorithm with weight decay fix as introduced in [Decoupled Weight Decay
Regularization](https://arxiv.org/abs/1711.05101).
Parameters:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*, defaults to 1e-3):
The learning rate to use.
betas (`Tuple[float,float]`, *optional*, defaults to (0.9, 0.999)):
Adam's betas parameters (b1, b2).
eps (`float`, *optional*, defaults to 1e-6):
Adam's epsilon for numerical stability.
weight_decay (`float`, *optional*, defaults to 0.0):
Decoupled weight decay to apply.
kahan_sum (`bool`, *optional*, defaults to False):
Whether to use Kahan summation for updating parameters.
foreach (`bool`, *optional*, defaults to False):
Whether to use the foreach implementation.
correct_bias (`bool`, *optional*, defaults to True):
Whether to correct bias in Adam.
use_state_dtype (`torch.dtype`, *optional*, defaults to None):
The dtype to use for optimizer state. If None, use the default dtype.
"""
def __init__(
self,
params: Iterable[nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
kahan_sum: bool = False,
foreach: bool = False,
correct_bias: bool = True,
use_state_dtype: torch.dtype = None
):
if lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0")
assert not (foreach and use_state_dtype is not None), "foreach is not supported with use_state_dtype"
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, foreach=foreach, \
kahan_sum=kahan_sum, correct_bias=correct_bias, use_state_dtype=use_state_dtype)
super().__init__(params, defaults)
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step.
Arguments:
closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
params, grads, exp_avgs, exp_avg_sqs, steps, kahan_comps = [], [], [], [], [], []
# Initialization
for p in group['params']:
if p.grad is None:
continue
params.append(p)
if p.grad.is_sparse:
raise RuntimeError('AdamWScale does not support sparse gradients')
grads.append(p.grad)
state = self.state[p]
# State initialization
if "kahan_comp" not in state:
state['step'] = torch.tensor(0, dtype=torch.int32, device=p.device)
if group["use_state_dtype"] in [torch.float16, torch.bfloat16]:
state['exp_avg'] = torch.zeros_like(p, device=p.device, dtype=group["use_state_dtype"])
state['exp_avg_sq'] = torch.zeros_like(p, device=p.device, dtype=group["use_state_dtype"])
else:
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if group["kahan_sum"] and p.dtype in [torch.float16, torch.bfloat16]:
state["kahan_comp"] = torch.zeros_like(p, memory_format=torch.preserve_format)
else:
state["kahan_comp"] = None
group["kahan_sum"] = False
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
kahan_comps.append(state["kahan_comp"])
steps.append(state["step"])
torch._foreach_add_(steps, 1)
# AdamW step
if group["foreach"] and _default_to_fused_or_foreach(params, False, False):
self._foreach_adamwscaled(params,
grads,
exp_avgs,
exp_avg_sqs,
steps,
kahan_comps,
group["lr"],
group["betas"][0],
group["betas"][1],
group["weight_decay"],
group["eps"],
group["kahan_sum"],
group["correct_bias"])
else:
self._adamwscaled(params,
grads,
exp_avgs,
exp_avg_sqs,
steps,
kahan_comps,
group["lr"],
group["betas"][0],
group["betas"][1],
group["weight_decay"],
group["eps"],
group["kahan_sum"],
group["correct_bias"])
return loss
def _adamwscaled(self,
params: list[Tensor],
grads: list[Tensor],
exp_avgs: list[Tensor],
exp_avg_sqs: list[Tensor],
steps: list[Tensor],
kahan_comps: list[Tensor],
lr: float,
beta1: float,
beta2: float,
weight_decay: float,
eps: float,
do_kahan_sum: bool,
correct_bias: bool):
for i, p in enumerate(params):
exp_avg, exp_avg_sq, grad, step, kahan_comp = exp_avgs[i], exp_avg_sqs[i], grads[i], steps[i], kahan_comps[i]
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1.0 - beta2))
denom = exp_avg_sq.sqrt().add_(eps)
step_size = lr
if correct_bias: # No bias correction for Bert
bias_correction1 = 1.0 - beta1 ** step
bias_correction2 = 1.0 - beta2 ** step
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
# Adapt Step from Adafactor
step_size = step_size * max(1e-3, self._rms(p.data))
if do_kahan_sum:
# Adam step
kahan_comp.addcdiv_(exp_avg, denom, value=-step_size)
# update weights with kahan compensation using dev_grads as temp buffer
grad.copy_(p)
p.add_(kahan_comp)
# save error back to kahan compensation for next iteration
grad.sub_(p, alpha=1)
kahan_comp.add_(grad, alpha=1)
else:
p.addcdiv_(exp_avg, denom, value=-step_size)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if weight_decay > 0.0:
p.add_(p, alpha=(-lr * weight_decay))
def _foreach_adamwscaled(self,
params: list[Tensor],
grads: list[Tensor],
exp_avgs: list[Tensor],
exp_avg_sqs: list[Tensor],
steps: list[Tensor],
kahan_comps: list[Tensor],
lr: float,
beta1: float,
beta2: float,
weight_decay: float,
eps: float,
do_kahan_sum: bool,
correct_bias: bool):
grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, kahan_comps])
for (_, dtype), ((dev_params, dev_grads, dev_exp_avgs, dev_exp_avg_sqs, dev_kahan_comps), _) in grouped_tensors.items():
# Foreach implementation
torch._foreach_mul_(dev_exp_avgs, beta1)
torch._foreach_add_(dev_exp_avgs, dev_grads, alpha=1 - beta1)
torch._foreach_mul_(dev_exp_avg_sqs, beta2)
torch._foreach_addcmul_(dev_exp_avg_sqs, dev_grads, dev_grads, 1 - beta2)
# Compute denominator
torch._foreach_copy_(dev_grads, dev_exp_avg_sqs)
torch._foreach_sqrt_(dev_grads)
torch._foreach_add_(dev_grads, eps)
step_size = [torch.tensor(lr, dtype=torch.float32, device=p.device) for p in dev_params]
if correct_bias:
torch._foreach_mul_(step_size,
[torch.tensor((math.sqrt(1 - beta2 ** steps[i].item()) / (1 - beta1 ** steps[i].item()) ), dtype=torch.float32, device=p.device)
for i, p in enumerate(dev_params)])
# Adapt step size using RMS of parameters
rms_p = torch._foreach_norm(dev_params)
numel = [torch.tensor(math.sqrt(p.numel())) for p in dev_params]
torch._foreach_div_(rms_p, numel)
torch._foreach_maximum_(rms_p, 1e-3)
torch._foreach_mul_(step_size, rms_p)
torch._foreach_div_(dev_grads, step_size)
# explicitly delete tensors when not used
del rms_p
del numel
del step_size
# Update parameters
if do_kahan_sum:
# Adam step
torch._foreach_addcdiv_(dev_kahan_comps, dev_exp_avgs, dev_grads, value=-1)
# update weights with kahan compensation using dev_grads as temp buffer
torch._foreach_copy_(dev_grads, dev_params)
torch._foreach_add_(dev_params, dev_kahan_comps, alpha=1)
# save error back to kahan compensation for next iteration
torch._foreach_sub_(dev_grads, dev_params, alpha=1)
torch._foreach_add_(dev_kahan_comps, dev_grads, alpha=1)
else:
torch._foreach_addcdiv_(dev_params, dev_exp_avgs, dev_grads, value=-1)
# Weight decay
if weight_decay > 0.0:
torch._foreach_add_(dev_params, dev_params, alpha=-weight_decay * lr)
|