CISCai commited on
Commit
d5aa82b
·
verified ·
1 Parent(s): faf2ebc

Upload 13 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Yi-Coder-9B-Chat.imatrix.dat filter=lfs diff=lfs merge=lfs -text
37
+ Yi-Coder-9B-Chat.IQ1_M.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Yi-Coder-9B-Chat.IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Yi-Coder-9B-Chat.IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Yi-Coder-9B-Chat.IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Yi-Coder-9B-Chat.IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Yi-Coder-9B-Chat.IQ2_XXS.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Yi-Coder-9B-Chat.IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Yi-Coder-9B-Chat.IQ3_S.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Yi-Coder-9B-Chat.IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Yi-Coder-9B-Chat.IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Yi-Coder-9B-Chat.IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,305 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - code
5
+ language:
6
+ - code
7
+ base_model: 01-ai/Yi-Coder-9B-Chat
8
+ model_creator: 01.AI
9
+ model_name: Yi-Coder-9B-Chat
10
+ model_type: llama
11
+ datasets:
12
+ - m-a-p/CodeFeedback-Filtered-Instruction
13
+ quantized_by: CISC
14
+ ---
15
+
16
+ # Yi-Coder-9B-Chat - SOTA GGUF
17
+ - Model creator: [01.AI](https://huggingface.co/01-ai)
18
+ - Original model: [Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat)
19
+
20
+ <!-- description start -->
21
+ ## Description
22
+
23
+ This repo contains State Of The Art quantized GGUF format model files for [Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat).
24
+
25
+ Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.
26
+
27
+ Corrected EOS (<|im_end|>) and added EOT (<|endoftext|>) token to prevent infinite responses (am I the only one actually dog-fooding my own quants?).
28
+
29
+ Fill-in-Middle token metadata has been added, see [example](#simple-llama-cpp-python-example-fill-in-middle-code). NOTE: Yi's FIM requires support for [SPM infill mode](https://github.com/abetlen/llama-cpp-python/pull/1492)! However it seems it has not been extensively trained for this (perhaps not at all), so don't expect particularly great results...
30
+
31
+ <!-- description end -->
32
+
33
+
34
+ <!-- prompt-template start -->
35
+ ## Prompt template: ChatML
36
+
37
+ ```
38
+ <|im_start|>system
39
+ {system_prompt}<|im_end|>
40
+ <|im_start|>user
41
+ {prompt}<|im_end|>
42
+ <|im_start|>assistant
43
+ ```
44
+
45
+ <!-- prompt-template end -->
46
+
47
+
48
+ <!-- compatibility_gguf start -->
49
+ ## Compatibility
50
+
51
+ These quantised GGUFv3 files are compatible with llama.cpp from February 27th 2024 onwards, as of commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307)
52
+
53
+ They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.
54
+
55
+ ## Explanation of quantisation methods
56
+
57
+ <details>
58
+ <summary>Click to see details</summary>
59
+
60
+ The new methods available are:
61
+
62
+ * GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
63
+ * GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
64
+ * GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
65
+ * GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
66
+ * GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
67
+ * GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
68
+ * GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
69
+ * GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
70
+ * GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
71
+ * GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
72
+ * GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
73
+ * GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw
74
+
75
+ Refer to the Provided Files table below to see what files use which methods, and how.
76
+ </details>
77
+ <!-- compatibility_gguf end -->
78
+
79
+ <!-- README_GGUF.md-provided-files start -->
80
+ ## Provided files
81
+
82
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
83
+ | ---- | ---- | ---- | ---- | ---- | ----- |
84
+ | [Yi-Coder-9B-Chat.IQ1_S.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ1_S.gguf) | IQ1_S | 1 | 1.9 GB| 2.2 GB | smallest, significant quality loss |
85
+ | [Yi-Coder-9B-Chat.IQ1_M.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ1_M.gguf) | IQ1_M | 1 | 2.0 GB| 2.3 GB | very small, significant quality loss |
86
+ | [Yi-Coder-9B-Chat.IQ2_XXS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_XXS.gguf) | IQ2_XXS | 2 | 2.3 GB| 2.6 GB | very small, high quality loss |
87
+ | [Yi-Coder-9B-Chat.IQ2_XS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_XS.gguf) | IQ2_XS | 2 | 2.5 GB| 2.8 GB | very small, high quality loss |
88
+ | [Yi-Coder-9B-Chat.IQ2_S.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_S.gguf) | IQ2_S | 2 | 2.7 GB| 2.9 GB | small, substantial quality loss |
89
+ | [Yi-Coder-9B-Chat.IQ2_M.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_M.gguf) | IQ2_M | 2 | 2.9 GB| 3.1 GB | small, greater quality loss |
90
+ | [Yi-Coder-9B-Chat.IQ3_XXS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_XXS.gguf) | IQ3_XXS | 3 | 3.2 GB| 3.5 GB | very small, high quality loss |
91
+ | [Yi-Coder-9B-Chat.IQ3_XS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_XS.gguf) | IQ3_XS | 3 | 3.5 GB| 3.8 GB | small, substantial quality loss |
92
+ | [Yi-Coder-9B-Chat.IQ3_S.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_S.gguf) | IQ3_S | 3 | 3.6 GB| 3.9 GB | small, greater quality loss |
93
+ | [Yi-Coder-9B-Chat.IQ3_M.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_M.gguf) | IQ3_M | 3 | 3.8 GB| 4.1 GB | medium, balanced quality - recommended |
94
+ | [Yi-Coder-9B-Chat.IQ4_XS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ4_XS.gguf) | IQ4_XS | 4 | 4.5 GB| 4.7 GB | small, substantial quality loss |
95
+
96
+ Generated importance matrix file: [Yi-Coder-9B-Chat.imatrix.dat](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.imatrix.dat)
97
+
98
+ **Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
99
+
100
+ <!-- README_GGUF.md-provided-files end -->
101
+
102
+ <!-- README_GGUF.md-how-to-run start -->
103
+ ## Example `llama.cpp` command
104
+
105
+ Make sure you are using `llama.cpp` from commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307) or later.
106
+
107
+ ```shell
108
+ ./llama-cli -ngl 49 -m Yi-Coder-9B-Chat.IQ4_XS.gguf --color -c 131072 --temp 0 --repeat-penalty 1.1 -p "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
109
+ ```
110
+
111
+ Change `-ngl 49` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
112
+
113
+ Change `-c 131072` to the desired sequence length.
114
+
115
+ If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
116
+ There is a similar option for V-cache (`-ctv`), only available if you enable Flash Attention (`-fa`) as well.
117
+
118
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
119
+
120
+ ## How to run from Python code
121
+
122
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.
123
+
124
+ ### How to load this model in Python code, using llama-cpp-python
125
+
126
+ For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).
127
+
128
+ #### First install the package
129
+
130
+ Run one of the following commands, according to your system:
131
+
132
+ ```shell
133
+ # Prebuilt wheel with basic CPU support
134
+ pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
135
+ # Prebuilt wheel with NVidia CUDA acceleration
136
+ pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
137
+ # Prebuilt wheel with Metal GPU acceleration
138
+ pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
139
+ # Build base version with no GPU acceleration
140
+ pip install llama-cpp-python
141
+ # With NVidia CUDA acceleration
142
+ CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
143
+ # Or with OpenBLAS acceleration
144
+ CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
145
+ # Or with AMD ROCm GPU acceleration (Linux only)
146
+ CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python
147
+ # Or with Metal GPU acceleration for macOS systems only
148
+ CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python
149
+ # Or with Vulkan acceleration
150
+ CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python
151
+ # Or with SYCL acceleration
152
+ CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
153
+
154
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
155
+ $env:CMAKE_ARGS = "-DGGML_CUDA=on"
156
+ pip install llama-cpp-python
157
+ ```
158
+
159
+ #### Simple llama-cpp-python example code
160
+
161
+ ```python
162
+ from llama_cpp import Llama
163
+
164
+ # Chat Completion API
165
+
166
+ llm = Llama(model_path="./Yi-Coder-9B-Chat.IQ4_XS.gguf", n_gpu_layers=49, n_ctx=131072)
167
+ print(llm.create_chat_completion(
168
+ repeat_penalty = 1.1,
169
+ messages = [
170
+ {
171
+ "role": "user",
172
+ "content": "Pick a LeetCode challenge and solve it in Python."
173
+ }
174
+ ]
175
+ ))
176
+ ```
177
+
178
+ #### Simple llama-cpp-python example fill-in-middle code
179
+
180
+ ```python
181
+ from llama_cpp import Llama
182
+
183
+ # Completion API
184
+
185
+ prompt = "def add("
186
+ suffix = "\n return sum\n\n"
187
+
188
+ llm = Llama(model_path="./Yi-Coder-9B-Chat.IQ4_XS.gguf", n_gpu_layers=49, n_ctx=131072, spm_infill=True)
189
+ output = llm.create_completion(
190
+ temperature = 0.0,
191
+ repeat_penalty = 1.0,
192
+ prompt = prompt,
193
+ suffix = suffix
194
+ )
195
+
196
+ # Models sometimes repeat suffix in response, attempt to filter that
197
+ response = output["choices"][0]["text"]
198
+ response_stripped = response.rstrip()
199
+ unwanted_response_suffix = suffix.rstrip()
200
+ unwanted_response_length = len(unwanted_response_suffix)
201
+
202
+ filtered = False
203
+ if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
204
+ response = response_stripped[:-unwanted_response_length]
205
+ filtered = True
206
+
207
+ print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[{'33' if filtered else '0'}m{suffix}\033[0m")
208
+ ```
209
+
210
+ <!-- README_GGUF.md-how-to-run end -->
211
+
212
+ <!-- original-model-card start -->
213
+ <div align="center">
214
+
215
+ <picture>
216
+ <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="120px">
217
+ </picture>
218
+
219
+ </div>
220
+
221
+ <p align="center">
222
+ <a href="https://github.com/01-ai">🐙 GitHub</a> •
223
+ <a href="https://discord.gg/hYUwWddeAu">👾 Discord</a> •
224
+ <a href="https://twitter.com/01ai_yi">🐤 Twitter</a> •
225
+ <a href="https://github.com/01-ai/Yi-1.5/issues/2">💬 WeChat</a>
226
+ <br/>
227
+ <a href="https://arxiv.org/abs/2403.04652">📝 Paper</a> •
228
+ <a href="https://01-ai.github.io/">💪 Tech Blog</a> •
229
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">🙌 FAQ</a> •
230
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">📗 Learning Hub</a>
231
+ </p>
232
+
233
+ # Intro
234
+
235
+ Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.
236
+
237
+ Key features:
238
+ - Excelling in long-context understanding with a maximum context length of 128K tokens.
239
+ - Supporting 52 major programming languages:
240
+ ```bash
241
+ 'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
242
+ ```
243
+
244
+ For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
245
+
246
+ <p align="left">
247
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/yi-coder-calculator-demo.gif?raw=true" alt="demo1" width="500"/>
248
+ </p>
249
+
250
+ # Models
251
+
252
+ | Name | Type | Length | Download |
253
+ |--------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
254
+ | Yi-Coder-9B-Chat | Chat | 128K | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B-Chat) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B-Chat) |
255
+ | Yi-Coder-1.5B-Chat | Chat | 128K | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B-Chat) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B-Chat) |
256
+ | Yi-Coder-9B | Base | 128K | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B) |
257
+ | Yi-Coder-1.5B | Base | 128K | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B) |
258
+ | |
259
+
260
+ # Benchmarks
261
+
262
+ As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
263
+
264
+ <p align="left">
265
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/bench1.webp?raw=true" alt="bench1" width="1000"/>
266
+ </p>
267
+
268
+ # Quick Start
269
+
270
+ You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
271
+ ```python
272
+ from transformers import AutoTokenizer, AutoModelForCausalLM
273
+
274
+ device = "cuda" # the device to load the model onto
275
+ model_path = "01-ai/Yi-Coder-9B-Chat"
276
+
277
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
278
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
279
+
280
+ prompt = "Write a quick sort algorithm."
281
+ messages = [
282
+ {"role": "system", "content": "You are a helpful assistant."},
283
+ {"role": "user", "content": prompt}
284
+ ]
285
+ text = tokenizer.apply_chat_template(
286
+ messages,
287
+ tokenize=False,
288
+ add_generation_prompt=True
289
+ )
290
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
291
+
292
+ generated_ids = model.generate(
293
+ model_inputs.input_ids,
294
+ max_new_tokens=1024,
295
+ eos_token_id=tokenizer.eos_token_id
296
+ )
297
+ generated_ids = [
298
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
299
+ ]
300
+
301
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
302
+ print(response)
303
+ ```
304
+
305
+ For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
Yi-Coder-9B-Chat.IQ1_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b78d928608b990ce33db54e7bc3ccc2a0cd8d40d2e9377ac0960eff418bb9f4f
3
+ size 2181641152
Yi-Coder-9B-Chat.IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85936d853fa60593df331adb589a87c402ea7fa5f933025a393b3c294b357b34
3
+ size 2014573504
Yi-Coder-9B-Chat.IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14343048726c07cd0bd77afadb5005b2a65979129f6030af8ef0d1eb76051ba8
3
+ size 3098112960
Yi-Coder-9B-Chat.IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c689d7fa1ebd6e2c142befbce70d457245335c085b082ba872b493caefad69db
3
+ size 2875356096
Yi-Coder-9B-Chat.IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02bbac077b8b7dce2e44b9de3db8f76d892aa7d3364d910e502e9093a183d89b
3
+ size 2708009920
Yi-Coder-9B-Chat.IQ2_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888f6e659a9a28b4752c94f03b77602fb0a400b36084fba768eb89b8196e2f09
3
+ size 2460087232
Yi-Coder-9B-Chat.IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0588f4e66af2cfd0dc778a885d7684cf340d52641255f2bcf328be34059b56eb
3
+ size 4055462848
Yi-Coder-9B-Chat.IQ3_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:551872b6ea7c83a9251b8cff65e36019b3d7ed3ec5f6d02535fc8b497dedb0ed
3
+ size 3912577984
Yi-Coder-9B-Chat.IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:490a0fb256cfbeee1657dc01b37edee880c3e0d97a75f25af53cd0a8637a806b
3
+ size 3717936064
Yi-Coder-9B-Chat.IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eb5101bc603af9e6bf1dc6c5c3bdb465af4652ab3506d405fbfe6def1b2b3a2
3
+ size 3474322368
Yi-Coder-9B-Chat.IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed52436d62c1f25250b1914dd73ea4e8db247ed2752be0245aee6d412133b73d
3
+ size 4785009600
Yi-Coder-9B-Chat.imatrix.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f8ed0f6830f6deb8dbf36baa781cacfa01e4261ac9ac69c0373613fa7345e2
3
+ size 6843280