cterdam commited on
Commit
ee4d84f
·
verified ·
1 Parent(s): 0597c47

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Meta-Llama-3-8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Meta-Llama-3-8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 256,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "o_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "up_proj",
27
+ "down_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cfab3b24dfe69d00f753e66c7247800bb56b25b4c64c94e863402f07e9397c6
3
+ size 671149168
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20fb513e8a55835af2bec109e70e3526b790fd4728e260d4b6bf3681c4246678
3
+ size 1342555602
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:606651ee321efa71bd93e7bce04ce0daa00a27912f326afc4323af8feeb34222
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9264d8cdc8138f69f536e7fa3a7a5c21eed01e21c6a304f85655d61ce8842874
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.868411617067049,
5
+ "eval_steps": 2000,
6
+ "global_step": 8000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "grad_norm": 2.6033709049224854,
14
+ "learning_rate": 9.9e-07,
15
+ "loss": 1.0789,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.07,
20
+ "grad_norm": 3.7718708515167236,
21
+ "learning_rate": 9.9e-07,
22
+ "loss": 0.8366,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.11,
27
+ "grad_norm": 4.209937572479248,
28
+ "learning_rate": 9.8e-07,
29
+ "loss": 0.6863,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.14,
34
+ "grad_norm": 2.8079888820648193,
35
+ "learning_rate": 9.698989898989898e-07,
36
+ "loss": 0.6659,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.18,
41
+ "grad_norm": 4.12679386138916,
42
+ "learning_rate": 9.598989898989899e-07,
43
+ "loss": 0.6546,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.22,
48
+ "grad_norm": 3.909221887588501,
49
+ "learning_rate": 9.497979797979798e-07,
50
+ "loss": 0.6581,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.25,
55
+ "grad_norm": 3.234121322631836,
56
+ "learning_rate": 9.396969696969696e-07,
57
+ "loss": 0.6224,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.29,
62
+ "grad_norm": 3.9791226387023926,
63
+ "learning_rate": 9.295959595959596e-07,
64
+ "loss": 0.6139,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.32,
69
+ "grad_norm": 3.557487726211548,
70
+ "learning_rate": 9.194949494949495e-07,
71
+ "loss": 0.6272,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 0.36,
76
+ "grad_norm": 3.946579694747925,
77
+ "learning_rate": 9.093939393939394e-07,
78
+ "loss": 0.6312,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 0.39,
83
+ "grad_norm": 3.4085192680358887,
84
+ "learning_rate": 8.992929292929292e-07,
85
+ "loss": 0.6139,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 0.43,
90
+ "grad_norm": 3.036348342895508,
91
+ "learning_rate": 8.891919191919191e-07,
92
+ "loss": 0.637,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 0.47,
97
+ "grad_norm": 5.595344066619873,
98
+ "learning_rate": 8.790909090909091e-07,
99
+ "loss": 0.6447,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 0.5,
104
+ "grad_norm": 4.76248025894165,
105
+ "learning_rate": 8.68989898989899e-07,
106
+ "loss": 0.6419,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 0.54,
111
+ "grad_norm": 2.9645845890045166,
112
+ "learning_rate": 8.588888888888888e-07,
113
+ "loss": 0.6569,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 0.57,
118
+ "grad_norm": 2.357501268386841,
119
+ "learning_rate": 8.487878787878787e-07,
120
+ "loss": 0.6345,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 0.61,
125
+ "grad_norm": 4.0495171546936035,
126
+ "learning_rate": 8.386868686868687e-07,
127
+ "loss": 0.6004,
128
+ "step": 1700
129
+ },
130
+ {
131
+ "epoch": 0.65,
132
+ "grad_norm": 3.0601418018341064,
133
+ "learning_rate": 8.285858585858585e-07,
134
+ "loss": 0.6444,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 0.68,
139
+ "grad_norm": 4.655466079711914,
140
+ "learning_rate": 8.184848484848484e-07,
141
+ "loss": 0.621,
142
+ "step": 1900
143
+ },
144
+ {
145
+ "epoch": 0.72,
146
+ "grad_norm": 4.7475666999816895,
147
+ "learning_rate": 8.083838383838384e-07,
148
+ "loss": 0.6554,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 0.72,
153
+ "eval_loss": 0.7412441372871399,
154
+ "eval_runtime": 565.2186,
155
+ "eval_samples_per_second": 1.769,
156
+ "eval_steps_per_second": 0.442,
157
+ "step": 2000
158
+ },
159
+ {
160
+ "epoch": 0.75,
161
+ "grad_norm": 4.251164436340332,
162
+ "learning_rate": 7.982828282828282e-07,
163
+ "loss": 0.5995,
164
+ "step": 2100
165
+ },
166
+ {
167
+ "epoch": 0.79,
168
+ "grad_norm": 5.217769145965576,
169
+ "learning_rate": 7.881818181818182e-07,
170
+ "loss": 0.5995,
171
+ "step": 2200
172
+ },
173
+ {
174
+ "epoch": 0.82,
175
+ "grad_norm": 3.5968048572540283,
176
+ "learning_rate": 7.78080808080808e-07,
177
+ "loss": 0.5888,
178
+ "step": 2300
179
+ },
180
+ {
181
+ "epoch": 0.86,
182
+ "grad_norm": 3.394106388092041,
183
+ "learning_rate": 7.679797979797979e-07,
184
+ "loss": 0.5945,
185
+ "step": 2400
186
+ },
187
+ {
188
+ "epoch": 0.9,
189
+ "grad_norm": 2.829554796218872,
190
+ "learning_rate": 7.578787878787879e-07,
191
+ "loss": 0.6102,
192
+ "step": 2500
193
+ },
194
+ {
195
+ "epoch": 0.93,
196
+ "grad_norm": 6.449063777923584,
197
+ "learning_rate": 7.477777777777778e-07,
198
+ "loss": 0.6231,
199
+ "step": 2600
200
+ },
201
+ {
202
+ "epoch": 0.97,
203
+ "grad_norm": 5.725988388061523,
204
+ "learning_rate": 7.376767676767676e-07,
205
+ "loss": 0.5908,
206
+ "step": 2700
207
+ },
208
+ {
209
+ "epoch": 1.0,
210
+ "grad_norm": 4.436861515045166,
211
+ "learning_rate": 7.276767676767677e-07,
212
+ "loss": 0.6021,
213
+ "step": 2800
214
+ },
215
+ {
216
+ "epoch": 1.04,
217
+ "grad_norm": 5.17264986038208,
218
+ "learning_rate": 7.175757575757575e-07,
219
+ "loss": 0.6142,
220
+ "step": 2900
221
+ },
222
+ {
223
+ "epoch": 1.08,
224
+ "grad_norm": 4.872317790985107,
225
+ "learning_rate": 7.074747474747474e-07,
226
+ "loss": 0.572,
227
+ "step": 3000
228
+ },
229
+ {
230
+ "epoch": 1.11,
231
+ "grad_norm": 2.839364767074585,
232
+ "learning_rate": 6.973737373737374e-07,
233
+ "loss": 0.5839,
234
+ "step": 3100
235
+ },
236
+ {
237
+ "epoch": 1.15,
238
+ "grad_norm": 4.395648956298828,
239
+ "learning_rate": 6.872727272727273e-07,
240
+ "loss": 0.5789,
241
+ "step": 3200
242
+ },
243
+ {
244
+ "epoch": 1.18,
245
+ "grad_norm": 3.2688417434692383,
246
+ "learning_rate": 6.771717171717171e-07,
247
+ "loss": 0.5866,
248
+ "step": 3300
249
+ },
250
+ {
251
+ "epoch": 1.22,
252
+ "grad_norm": 3.7224113941192627,
253
+ "learning_rate": 6.67070707070707e-07,
254
+ "loss": 0.5899,
255
+ "step": 3400
256
+ },
257
+ {
258
+ "epoch": 1.25,
259
+ "grad_norm": 5.710260391235352,
260
+ "learning_rate": 6.56969696969697e-07,
261
+ "loss": 0.5904,
262
+ "step": 3500
263
+ },
264
+ {
265
+ "epoch": 1.29,
266
+ "grad_norm": 2.4542274475097656,
267
+ "learning_rate": 6.468686868686868e-07,
268
+ "loss": 0.576,
269
+ "step": 3600
270
+ },
271
+ {
272
+ "epoch": 1.33,
273
+ "grad_norm": 3.639458417892456,
274
+ "learning_rate": 6.367676767676767e-07,
275
+ "loss": 0.5973,
276
+ "step": 3700
277
+ },
278
+ {
279
+ "epoch": 1.36,
280
+ "grad_norm": 5.416239261627197,
281
+ "learning_rate": 6.267676767676767e-07,
282
+ "loss": 0.5855,
283
+ "step": 3800
284
+ },
285
+ {
286
+ "epoch": 1.4,
287
+ "grad_norm": 4.7683491706848145,
288
+ "learning_rate": 6.166666666666667e-07,
289
+ "loss": 0.601,
290
+ "step": 3900
291
+ },
292
+ {
293
+ "epoch": 1.43,
294
+ "grad_norm": 4.035972595214844,
295
+ "learning_rate": 6.065656565656565e-07,
296
+ "loss": 0.5937,
297
+ "step": 4000
298
+ },
299
+ {
300
+ "epoch": 1.43,
301
+ "eval_loss": 0.7268955111503601,
302
+ "eval_runtime": 200.0217,
303
+ "eval_samples_per_second": 4.999,
304
+ "eval_steps_per_second": 1.25,
305
+ "step": 4000
306
+ },
307
+ {
308
+ "epoch": 1.47,
309
+ "grad_norm": 4.085280895233154,
310
+ "learning_rate": 5.964646464646465e-07,
311
+ "loss": 0.6013,
312
+ "step": 4100
313
+ },
314
+ {
315
+ "epoch": 1.51,
316
+ "grad_norm": 3.6953155994415283,
317
+ "learning_rate": 5.863636363636362e-07,
318
+ "loss": 0.5759,
319
+ "step": 4200
320
+ },
321
+ {
322
+ "epoch": 1.54,
323
+ "grad_norm": 3.836264133453369,
324
+ "learning_rate": 5.762626262626262e-07,
325
+ "loss": 0.5884,
326
+ "step": 4300
327
+ },
328
+ {
329
+ "epoch": 1.58,
330
+ "grad_norm": 2.8229424953460693,
331
+ "learning_rate": 5.661616161616162e-07,
332
+ "loss": 0.587,
333
+ "step": 4400
334
+ },
335
+ {
336
+ "epoch": 1.61,
337
+ "grad_norm": 4.92821741104126,
338
+ "learning_rate": 5.56060606060606e-07,
339
+ "loss": 0.588,
340
+ "step": 4500
341
+ },
342
+ {
343
+ "epoch": 1.65,
344
+ "grad_norm": 4.6057209968566895,
345
+ "learning_rate": 5.459595959595959e-07,
346
+ "loss": 0.5626,
347
+ "step": 4600
348
+ },
349
+ {
350
+ "epoch": 1.69,
351
+ "grad_norm": 4.422310829162598,
352
+ "learning_rate": 5.358585858585858e-07,
353
+ "loss": 0.6004,
354
+ "step": 4700
355
+ },
356
+ {
357
+ "epoch": 1.72,
358
+ "grad_norm": 4.302188873291016,
359
+ "learning_rate": 5.257575757575757e-07,
360
+ "loss": 0.5968,
361
+ "step": 4800
362
+ },
363
+ {
364
+ "epoch": 1.76,
365
+ "grad_norm": 4.448782444000244,
366
+ "learning_rate": 5.156565656565657e-07,
367
+ "loss": 0.5558,
368
+ "step": 4900
369
+ },
370
+ {
371
+ "epoch": 1.79,
372
+ "grad_norm": 7.0250468254089355,
373
+ "learning_rate": 5.055555555555555e-07,
374
+ "loss": 0.5816,
375
+ "step": 5000
376
+ },
377
+ {
378
+ "epoch": 1.83,
379
+ "grad_norm": 3.789271354675293,
380
+ "learning_rate": 4.954545454545454e-07,
381
+ "loss": 0.5916,
382
+ "step": 5100
383
+ },
384
+ {
385
+ "epoch": 1.86,
386
+ "grad_norm": 4.383288860321045,
387
+ "learning_rate": 4.853535353535353e-07,
388
+ "loss": 0.5971,
389
+ "step": 5200
390
+ },
391
+ {
392
+ "epoch": 1.9,
393
+ "grad_norm": 3.860795497894287,
394
+ "learning_rate": 4.752525252525252e-07,
395
+ "loss": 0.5777,
396
+ "step": 5300
397
+ },
398
+ {
399
+ "epoch": 1.94,
400
+ "grad_norm": 4.237746715545654,
401
+ "learning_rate": 4.6515151515151513e-07,
402
+ "loss": 0.5624,
403
+ "step": 5400
404
+ },
405
+ {
406
+ "epoch": 1.97,
407
+ "grad_norm": 4.311546325683594,
408
+ "learning_rate": 4.55050505050505e-07,
409
+ "loss": 0.564,
410
+ "step": 5500
411
+ },
412
+ {
413
+ "epoch": 2.01,
414
+ "grad_norm": 4.511820316314697,
415
+ "learning_rate": 4.449494949494949e-07,
416
+ "loss": 0.5877,
417
+ "step": 5600
418
+ },
419
+ {
420
+ "epoch": 2.04,
421
+ "grad_norm": 3.5643811225891113,
422
+ "learning_rate": 4.3484848484848483e-07,
423
+ "loss": 0.5613,
424
+ "step": 5700
425
+ },
426
+ {
427
+ "epoch": 2.08,
428
+ "grad_norm": 8.33705997467041,
429
+ "learning_rate": 4.2474747474747474e-07,
430
+ "loss": 0.5495,
431
+ "step": 5800
432
+ },
433
+ {
434
+ "epoch": 2.12,
435
+ "grad_norm": 7.947268962860107,
436
+ "learning_rate": 4.1464646464646466e-07,
437
+ "loss": 0.5606,
438
+ "step": 5900
439
+ },
440
+ {
441
+ "epoch": 2.15,
442
+ "grad_norm": 3.636181116104126,
443
+ "learning_rate": 4.045454545454545e-07,
444
+ "loss": 0.5959,
445
+ "step": 6000
446
+ },
447
+ {
448
+ "epoch": 2.15,
449
+ "eval_loss": 0.7278199791908264,
450
+ "eval_runtime": 200.1118,
451
+ "eval_samples_per_second": 4.997,
452
+ "eval_steps_per_second": 1.249,
453
+ "step": 6000
454
+ },
455
+ {
456
+ "epoch": 2.19,
457
+ "grad_norm": 5.361893653869629,
458
+ "learning_rate": 3.9444444444444444e-07,
459
+ "loss": 0.5576,
460
+ "step": 6100
461
+ },
462
+ {
463
+ "epoch": 2.22,
464
+ "grad_norm": 6.71414041519165,
465
+ "learning_rate": 3.843434343434343e-07,
466
+ "loss": 0.5528,
467
+ "step": 6200
468
+ },
469
+ {
470
+ "epoch": 2.26,
471
+ "grad_norm": 5.422142505645752,
472
+ "learning_rate": 3.7424242424242427e-07,
473
+ "loss": 0.5768,
474
+ "step": 6300
475
+ },
476
+ {
477
+ "epoch": 2.29,
478
+ "grad_norm": 5.764580249786377,
479
+ "learning_rate": 3.6414141414141413e-07,
480
+ "loss": 0.5366,
481
+ "step": 6400
482
+ },
483
+ {
484
+ "epoch": 2.33,
485
+ "grad_norm": 4.993276119232178,
486
+ "learning_rate": 3.5404040404040405e-07,
487
+ "loss": 0.5868,
488
+ "step": 6500
489
+ },
490
+ {
491
+ "epoch": 2.37,
492
+ "grad_norm": 4.675057411193848,
493
+ "learning_rate": 3.439393939393939e-07,
494
+ "loss": 0.5757,
495
+ "step": 6600
496
+ },
497
+ {
498
+ "epoch": 2.4,
499
+ "grad_norm": 5.1432952880859375,
500
+ "learning_rate": 3.3383838383838383e-07,
501
+ "loss": 0.5481,
502
+ "step": 6700
503
+ },
504
+ {
505
+ "epoch": 2.44,
506
+ "grad_norm": 4.467919826507568,
507
+ "learning_rate": 3.237373737373737e-07,
508
+ "loss": 0.5678,
509
+ "step": 6800
510
+ },
511
+ {
512
+ "epoch": 2.47,
513
+ "grad_norm": 5.593632698059082,
514
+ "learning_rate": 3.1363636363636366e-07,
515
+ "loss": 0.5806,
516
+ "step": 6900
517
+ },
518
+ {
519
+ "epoch": 2.51,
520
+ "grad_norm": 6.1436543464660645,
521
+ "learning_rate": 3.035353535353535e-07,
522
+ "loss": 0.5948,
523
+ "step": 7000
524
+ },
525
+ {
526
+ "epoch": 2.55,
527
+ "grad_norm": 5.402268409729004,
528
+ "learning_rate": 2.9343434343434344e-07,
529
+ "loss": 0.5694,
530
+ "step": 7100
531
+ },
532
+ {
533
+ "epoch": 2.58,
534
+ "grad_norm": 6.120490550994873,
535
+ "learning_rate": 2.833333333333333e-07,
536
+ "loss": 0.5463,
537
+ "step": 7200
538
+ },
539
+ {
540
+ "epoch": 2.62,
541
+ "grad_norm": 5.256354331970215,
542
+ "learning_rate": 2.732323232323232e-07,
543
+ "loss": 0.5404,
544
+ "step": 7300
545
+ },
546
+ {
547
+ "epoch": 2.65,
548
+ "grad_norm": 5.65523624420166,
549
+ "learning_rate": 2.631313131313131e-07,
550
+ "loss": 0.5585,
551
+ "step": 7400
552
+ },
553
+ {
554
+ "epoch": 2.69,
555
+ "grad_norm": 5.652821063995361,
556
+ "learning_rate": 2.5303030303030305e-07,
557
+ "loss": 0.584,
558
+ "step": 7500
559
+ },
560
+ {
561
+ "epoch": 2.72,
562
+ "grad_norm": 5.771843433380127,
563
+ "learning_rate": 2.429292929292929e-07,
564
+ "loss": 0.5688,
565
+ "step": 7600
566
+ },
567
+ {
568
+ "epoch": 2.76,
569
+ "grad_norm": 4.806066036224365,
570
+ "learning_rate": 2.3282828282828283e-07,
571
+ "loss": 0.5708,
572
+ "step": 7700
573
+ },
574
+ {
575
+ "epoch": 2.8,
576
+ "grad_norm": 5.846754550933838,
577
+ "learning_rate": 2.2272727272727272e-07,
578
+ "loss": 0.5689,
579
+ "step": 7800
580
+ },
581
+ {
582
+ "epoch": 2.83,
583
+ "grad_norm": 5.313455104827881,
584
+ "learning_rate": 2.1262626262626264e-07,
585
+ "loss": 0.5546,
586
+ "step": 7900
587
+ },
588
+ {
589
+ "epoch": 2.87,
590
+ "grad_norm": 5.1212897300720215,
591
+ "learning_rate": 2.0252525252525253e-07,
592
+ "loss": 0.5407,
593
+ "step": 8000
594
+ },
595
+ {
596
+ "epoch": 2.87,
597
+ "eval_loss": 0.7307297587394714,
598
+ "eval_runtime": 200.5169,
599
+ "eval_samples_per_second": 4.987,
600
+ "eval_steps_per_second": 1.247,
601
+ "step": 8000
602
+ }
603
+ ],
604
+ "logging_steps": 100,
605
+ "max_steps": 10000,
606
+ "num_input_tokens_seen": 0,
607
+ "num_train_epochs": 4,
608
+ "save_steps": 2000,
609
+ "total_flos": 7.541625072742564e+17,
610
+ "train_batch_size": 4,
611
+ "trial_name": null,
612
+ "trial_params": null
613
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59dfdf9d9de02204d3f5817f5ca58043d4f028375d529a1be40eb5f6ee073e32
3
+ size 4856