CSAle commited on
Commit
26707e6
1 Parent(s): 4989b1a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 251.18 +/- 21.50
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 270.60 +/- 18.97
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c4a07a050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c4a07a0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c4a07a170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c4a07a200>", "_build": "<function ActorCriticPolicy._build at 0x7f7c4a07a290>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c4a07a320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c4a07a3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c4a07a440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c4a07a4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c4a07a560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c4a07a5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7c4a071d40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674174869100080599, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa22r3D0T+6386UskVh6zDWvbM7770PMwAAgD8AAAAAZkatPFWbmz46tnW9Bq6FvkbhUDwok/m8AAAAAAAAAAA9CqC+qRQwPZH+nT2KODI86bjgvijmTT0AAIA/AACAP2owc755RJI/tW8Dvy0T8b4vPIS+rU/NvQAAAAAAAAAA81iAPewpz7lBKp+2os7UsegaVDsdcrs1AACAPwAAgD/NivC9HEh/vBqvNj1ppgy96Ff7PQUb4z0AAIA/AACAP5owqz2P+ku6JGpCuwVXkLbRkfQ6q3RlOgAAgD8AAAAAZgR5PLR38z3m7H++/204vl3llb1jT4i8AAAAAAAAAADzMI69g2VOP2LAA74NP5i+9S5yvbPtNL0AAAAAAAAAABrCN73CJSk/5qxuPElys74VrPm8uodIPQAAAAAAAAAAzv/XvjAPfD+EfT2+VMLSvgfVeb4xmpY9AAAAAAAAAAAgZDO+C6gYP815CT094c++hG1nvS1JfbsAAAAAAAAAAA1MJT55FFc/RU5MPuAh0b5ngj0+D2U7vQAAAAAAAAAAGvzfvT1aALmq6oG7NBp+OBCVxbu9FXc5AACAPwAAAADaVri9KThduuhCaDpeu/M1nkGrukBriLkAAIA/AAAAAGb+WTxcE2i6ZvUhufLnibQIV3y6uLo6OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEce6uA0mcUCUhpRSlIwBbJRNuwKMAXSUR0DD/8FcW0qpdX2UKGgGaAloD0MIEcZP417LbECUhpRSlGgVTXEBaBZHQMP/8nWJ79h1fZQoaAZoCWgPQwi+LsN/ukBmQJSGlFKUaBVN6ANoFkdAxAA8kGiYcHV9lChoBmgJaA9DCHYb1H5rGXBAlIaUUpRoFU2rAWgWR0DEAEOHck+pdX2UKGgGaAloD0MIu9OdJ56Kb0CUhpRSlGgVTfcCaBZHQMQAYXZf2K51fZQoaAZoCWgPQwipMSHmkphsQJSGlFKUaBVNdwJoFkdAxABt5/LDAXV9lChoBmgJaA9DCAu2EU/2OG5AlIaUUpRoFU2dAWgWR0DEAILfHggpdX2UKGgGaAloD0MIv5oDBPMWcECUhpRSlGgVTT4BaBZHQMQAiPwVj7R1fZQoaAZoCWgPQwiPcjCbAFFHQJSGlFKUaBVLxmgWR0DEAJiuwHJLdX2UKGgGaAloD0MIgPChRAtvcUCUhpRSlGgVTaMBaBZHQMQAtCswL3N1fZQoaAZoCWgPQwiHb2HdOAJwQJSGlFKUaBVNZQFoFkdAxADRZTQ3P3V9lChoBmgJaA9DCPLQd7ey0EFAlIaUUpRoFUvIaBZHQMQA5mZ/kNp1fZQoaAZoCWgPQwhSK0zf60ZvQJSGlFKUaBVNEQJoFkdAxAD5tY0VJ3V9lChoBmgJaA9DCOT5DKg35z9AlIaUUpRoFUvEaBZHQMQBIhfBvaV1fZQoaAZoCWgPQwgurBvvjohCQJSGlFKUaBVLtGgWR0DEASbe9Ba+dX2UKGgGaAloD0MIPnYXKCmMOUCUhpRSlGgVS9FoFkdAxAFc+WWyDHV9lChoBmgJaA9DCH089N3tCHFAlIaUUpRoFU0MAmgWR0DEAWg1zhgmdX2UKGgGaAloD0MINXugFRhyRUCUhpRSlGgVS8NoFkdAxAGIIhQm/nV9lChoBmgJaA9DCNf34SChvHJAlIaUUpRoFU2hAWgWR0DEAZTWmP5pdX2UKGgGaAloD0MIs5lDUgtDb0CUhpRSlGgVTYYBaBZHQMQBoZJK8L91fZQoaAZoCWgPQwjlfLH3YgZvQJSGlFKUaBVNkwFoFkdAxAHMPKdQPHV9lChoBmgJaA9DCB2u1R72g3FAlIaUUpRoFU2xAWgWR0DEAdBKDkELdX2UKGgGaAloD0MIntLB+j8NbUCUhpRSlGgVTREBaBZHQMQCCzbnHNp1fZQoaAZoCWgPQwggtYmT+9EzQJSGlFKUaBVLymgWR0DEAg/OY6XCdX2UKGgGaAloD0MILUKxFTRkb0CUhpRSlGgVTRwDaBZHQMQE7GhmGud1fZQoaAZoCWgPQwjPTgZHyUVsQJSGlFKUaBVNcgNoFkdAxAT3eruIAXV9lChoBmgJaA9DCD+Ne/MbUmJAlIaUUpRoFU3oA2gWR0DEBP3Q8fV7dX2UKGgGaAloD0MIelG7X0WAckCUhpRSlGgVTTkBaBZHQMQFADmjj711fZQoaAZoCWgPQwiNQpJZvRFPQJSGlFKUaBVL52gWR0DEBSj3M6ikdX2UKGgGaAloD0MIHsL4aVw9bECUhpRSlGgVS+toFkdAxAUw+hXbNHV9lChoBmgJaA9DCCrj32dch3BAlIaUUpRoFU1YAWgWR0DEBVzH6uW9dX2UKGgGaAloD0MIz7uxoDD4YkCUhpRSlGgVTegDaBZHQMQFYqeCkGl1fZQoaAZoCWgPQwgH8BZIEAlwQJSGlFKUaBVN+QFoFkdAxAVoQFLWZ3V9lChoBmgJaA9DCFnDRe5pUGZAlIaUUpRoFU3oA2gWR0DEBXsXYUWVdX2UKGgGaAloD0MIUMb4MHtwb0CUhpRSlGgVTV0CaBZHQMQFi9Zq20B1fZQoaAZoCWgPQwj+D7BW7cRGQJSGlFKUaBVL1WgWR0DEBarPyCnQdX2UKGgGaAloD0MI3SIw1rd0cECUhpRSlGgVTWIBaBZHQMQFzcnVoYh1fZQoaAZoCWgPQwj2fqMdtylzQJSGlFKUaBVNLgJoFkdAxAX5CBPKuHV9lChoBmgJaA9DCFIrTN9rfDVAlIaUUpRoFUvEaBZHQMQGGjhcZ+B1fZQoaAZoCWgPQwgjZvZ5THZxQJSGlFKUaBVNcwFoFkdAxAYnzshPkHV9lChoBmgJaA9DCPF/R1SoCHBAlIaUUpRoFU0MAWgWR0DEBjyxTsIFdX2UKGgGaAloD0MI0a3X9CDxcECUhpRSlGgVS/BoFkdAxAZUepXIVHV9lChoBmgJaA9DCAk3GVUGBW5AlIaUUpRoFU1IAWgWR0DEBmwTmGM5dX2UKGgGaAloD0MIVvKxu8AScUCUhpRSlGgVTVQBaBZHQMQGg2OyVwB1fZQoaAZoCWgPQwiJXdvbbapyQJSGlFKUaBVNPAJoFkdAxAaIGmDUVnV9lChoBmgJaA9DCP2k2qejWXBAlIaUUpRoFU2sAWgWR0DEBo6NKh+OdX2UKGgGaAloD0MIRSv3ArMKJ0CUhpRSlGgVS8doFkdAxAapHHWBjHV9lChoBmgJaA9DCDQtsTIaUnFAlIaUUpRoFUv8aBZHQMQGqfMGHHp1fZQoaAZoCWgPQwhmEYqtYHJwQJSGlFKUaBVNBAJoFkdAxAatxiobXHV9lChoBmgJaA9DCG78icoGWmJAlIaUUpRoFU3oA2gWR0DEBq8/MW43dX2UKGgGaAloD0MIhQg4hOpfckCUhpRSlGgVTYYBaBZHQMQG9brLQol1fZQoaAZoCWgPQwipEfqZOsNxQJSGlFKUaBVNQAFoFkdAxAcqmpEQXnV9lChoBmgJaA9DCCXNH9Pa9nBAlIaUUpRoFU1DAWgWR0DEB1BnlGPQdX2UKGgGaAloD0MIhhvw+eFwYUCUhpRSlGgVTegDaBZHQMQHa02LpA51fZQoaAZoCWgPQwhGBrmLMIxQQJSGlFKUaBVL32gWR0DEB2tvXK8tdX2UKGgGaAloD0MIkUQvo9isbkCUhpRSlGgVTT8BaBZHQMQHk8Rcu8N1fZQoaAZoCWgPQwhavcPt0HJHQJSGlFKUaBVLv2gWR0DEB55mCiAUdX2UKGgGaAloD0MI8DSZ8fZtcECUhpRSlGgVTSYDaBZHQMQH2JUo8ZF1fZQoaAZoCWgPQwi+Zrls9EZxQJSGlFKUaBVN5gFoFkdAxAf1XFtKqXV9lChoBmgJaA9DCHDNHf0vm3JAlIaUUpRoFU2wAWgWR0DEB/6XpnpTdX2UKGgGaAloD0MInRIQk3A8cECUhpRSlGgVTUgCaBZHQMQIHDzAeq91fZQoaAZoCWgPQwgkDW5rC1llQJSGlFKUaBVN6ANoFkdAxArTTuv2XnV9lChoBmgJaA9DCAcoDTWKWXBAlIaUUpRoFUv5aBZHQMQK2y/TLGJ1fZQoaAZoCWgPQwhy+nq+Ju1wQJSGlFKUaBVNQAFoFkdAxArbRVp9JHV9lChoBmgJaA9DCIunHmkwiHFAlIaUUpRoFU1CAWgWR0DECv2JLuhLdX2UKGgGaAloD0MIQSlauRdXcUCUhpRSlGgVS/xoFkdAxAsBMV1wHnV9lChoBmgJaA9DCHuCxHZ39XFAlIaUUpRoFU2IAmgWR0DECyrcdo38dX2UKGgGaAloD0MIdzHNdK91UUCUhpRSlGgVS7NoFkdAxAtkuoxYaHV9lChoBmgJaA9DCF6CUx/IPXJAlIaUUpRoFU3EAmgWR0DEC3pIQOFydX2UKGgGaAloD0MICvKzkev7b0CUhpRSlGgVTZgBaBZHQMQLk0yYXwd1fZQoaAZoCWgPQwjDZoALslpxQJSGlFKUaBVN/wJoFkdAxAvdRFZxJnV9lChoBmgJaA9DCLe3W5IDGWxAlIaUUpRoFU1MAWgWR0DEC/3aakRBdX2UKGgGaAloD0MIVb5nJELgcUCUhpRSlGgVTSEBaBZHQMQMAwJgLJF1fZQoaAZoCWgPQwhBtixfl9ZwQJSGlFKUaBVNPwFoFkdAxAwZUMoc73V9lChoBmgJaA9DCDgUPltHNXJAlIaUUpRoFU3nAWgWR0DEDBs495hSdX2UKGgGaAloD0MITDeJQSDscUCUhpRSlGgVTcoBaBZHQMQMIB6KLsN1fZQoaAZoCWgPQwhPsWoQZlxwQJSGlFKUaBVNKwFoFkdAxAw6VHFxXHV9lChoBmgJaA9DCMH+69w0I29AlIaUUpRoFU29A2gWR0DEDII2sJY1dX2UKGgGaAloD0MIntLB+j/Mb0CUhpRSlGgVTTcBaBZHQMQMgkxyn1p1fZQoaAZoCWgPQwiHFAMk2gBzQJSGlFKUaBVN3gJoFkdAxAyGy9EkSnV9lChoBmgJaA9DCHEBaJQuFSdAlIaUUpRoFUvKaBZHQMQMkyLAHml1fZQoaAZoCWgPQwjFO8CTFtJEQJSGlFKUaBVLrWgWR0DEDJhl+VkddX2UKGgGaAloD0MIO8Q/bOmfcECUhpRSlGgVTTsBaBZHQMQMmTAN5MV1fZQoaAZoCWgPQwi2vd2SHDVgQJSGlFKUaBVN6ANoFkdAxAykNqgyunV9lChoBmgJaA9DCNZSQNr/CCJAlIaUUpRoFUvEaBZHQMQMwbJGOMl1fZQoaAZoCWgPQwgZq83/KzBuQJSGlFKUaBVNCwFoFkdAxAzlQtz0YnV9lChoBmgJaA9DCNpyLsVVfm9AlIaUUpRoFU0WAWgWR0DEDSKraM72dX2UKGgGaAloD0MIxAjh0cbeUUCUhpRSlGgVS7hoFkdAxA0tLTx5LXV9lChoBmgJaA9DCI3SpX9JyjpAlIaUUpRoFUvZaBZHQMQNOLeZXuF1fZQoaAZoCWgPQwiuuDgqN5EKQJSGlFKUaBVLxmgWR0DEDUfvttygdX2UKGgGaAloD0MIH0sfuuDtcUCUhpRSlGgVTa4BaBZHQMQNhjKPn0V1fZQoaAZoCWgPQwiKOnMPCVBuQJSGlFKUaBVNOQFoFkdAxA2GUuctoXV9lChoBmgJaA9DCPw07s3vuXBAlIaUUpRoFU1GAWgWR0DEDZBsyi22dX2UKGgGaAloD0MIXJAty9drb0CUhpRSlGgVTQIBaBZHQMQNwSSmqHZ1fZQoaAZoCWgPQwhYrUz4pU4SQJSGlFKUaBVLwGgWR0DEDdyGi5/cdX2UKGgGaAloD0MIHEC/718scUCUhpRSlGgVTZkBaBZHQMQN6cTakAR1fZQoaAZoCWgPQwgj+UogpelhQJSGlFKUaBVN6ANoFkdAxA329gWrO3V9lChoBmgJaA9DCFYrE35p0nBAlIaUUpRoFU2kA2gWR0DEDf34EfT1dX2UKGgGaAloD0MIr9LddbagcUCUhpRSlGgVTUUCaBZHQMQODL5qM3t1fZQoaAZoCWgPQwhf1O5XAWZkQJSGlFKUaBVN6ANoFkdAxA4TEc81XXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c4a07a050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c4a07a0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c4a07a170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c4a07a200>", "_build": "<function ActorCriticPolicy._build at 0x7f7c4a07a290>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c4a07a320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c4a07a3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c4a07a440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c4a07a4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c4a07a560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c4a07a5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7c4a071d40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674250808773494007, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpHBL24vva54Cc/uiIOHjaH9i674rxeOQAAgD8AAIA/Zr32vC7Rrz8Oexa//h/FvlKQczx8PT+8AAAAAAAAAAAzTwc8Hz3wuf4yyDtxfcY3JozguoScjTYAAIA/AACAPzN7ibtS0Pe5+rrBurxESzQtjzi6oPTiOQAAgD8AAIA/zaBNPClQLbp29ou7u2UGuZN0HjnCspM4AACAPwAAgD9NDaa94WCBuvXy/7k5izY1M5LGOgpKFTkAAIA/AACAP2atjbz2RC669GSVu5T26jfSTpC5/hMitwAAgD8AAIA/mo3HvFwHXLoj6US6XrbstQqrhDva52E5AACAPwAAgD8z3iG9b/0DPpuP0D1h4om+oJWhPFIMET4AAAAAAAAAAGbm0TuJjgM9QJBVOwYPnb6uSsq8QYrBPAAAAAAAAAAAZgbVvI82TLq6m+O6JJIbtnF2kztugQU6AACAPwAAgD96YSS+17xeuzj1qLs+KQ25+EeSPKUC8TkAAIA/AACAP3NdiD0b87w/blEPP6H0BD6Xgtw83pJiPgAAAAAAAAAAs07bPcO9MroKgps5VU4LNcnxcjtn27W4AACAPwAAgD9myNo8XGtkulAZ87r8HD+210nKOjZaCToAAIA/AACAP42bYr7Qmt8+NqWwPgmOuL4rl8W8OaCbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu9HHfMA0aECUhpRSlIwBbJRN6AOMAXSUR0D1QWU09QoDdX2UKGgGaAloD0MIjq89syRaZkCUhpRSlGgVTegDaBZHQPVBbUlLOA11fZQoaAZoCWgPQwg1tteC3u9mQJSGlFKUaBVN6ANoFkdA9UFuwh4dIXV9lChoBmgJaA9DCLfte9Rf5GBAlIaUUpRoFU3oA2gWR0D1QXK7w8W9dX2UKGgGaAloD0MITMecZ+wKZkCUhpRSlGgVTegDaBZHQPVBdretSyd1fZQoaAZoCWgPQwgSh2wg3dhnQJSGlFKUaBVN6ANoFkdA9UF3WrwOOXV9lChoBmgJaA9DCMgIqHAErmFAlIaUUpRoFU3oA2gWR0D1QXd9YOlPdX2UKGgGaAloD0MIUI4CREGJZUCUhpRSlGgVTegDaBZHQPVBeEUEgW91fZQoaAZoCWgPQwgoZOdt7HNkQJSGlFKUaBVN6ANoFkdA9UF7dx2jf3V9lChoBmgJaA9DCEBpqFFISWdAlIaUUpRoFU3oA2gWR0D1QXuTLW7OdX2UKGgGaAloD0MI4UIewY2iQUCUhpRSlGgVS4RoFkdA9UF71z6rNnV9lChoBmgJaA9DCATLETKQFmlAlIaUUpRoFU3oA2gWR0D1QXwUPhAGdX2UKGgGaAloD0MIweYcPBPoTUCUhpRSlGgVS5loFkdA9UGIi83+/HV9lChoBmgJaA9DCPMgPUUOeGRAlIaUUpRoFU3oA2gWR0D1QZdZjx0/dX2UKGgGaAloD0MIiSZQxKKuZUCUhpRSlGgVTegDaBZHQPVBm9U4rBl1fZQoaAZoCWgPQwj3WztREuhkQJSGlFKUaBVN6ANoFkdA9UGzTSThYXV9lChoBmgJaA9DCKJCdXNxSmdAlIaUUpRoFU3oA2gWR0D1QcRzqbBodX2UKGgGaAloD0MI/g+wVm2RZ0CUhpRSlGgVTegDaBZHQPVBx0WweNl1fZQoaAZoCWgPQwi1/MBVnppkQJSGlFKUaBVN6ANoFkdA9UHd7xAjZHV9lChoBmgJaA9DCCEhyhc0pGhAlIaUUpRoFU3oA2gWR0D1QefrDIikdX2UKGgGaAloD0MI/MOWHs1YZUCUhpRSlGgVTegDaBZHQPVB7DPt2LZ1fZQoaAZoCWgPQwiIK2fvDJVkQJSGlFKUaBVN6ANoFkdA9UHwpTMq0HV9lChoBmgJaA9DCNGvrZ9+XGJAlIaUUpRoFU3oA2gWR0D1QfFtBfKIdX2UKGgGaAloD0MIaqSl8va/ZECUhpRSlGgVTegDaBZHQPVB8ZdTo+x1fZQoaAZoCWgPQwh23VuRmBRhQJSGlFKUaBVN6ANoFkdA9UHyj8gp0HV9lChoBmgJaA9DCDYgQlw5sF5AlIaUUpRoFU3oA2gWR0D1QfYynk1edX2UKGgGaAloD0MIf0xr09i8YECUhpRSlGgVTegDaBZHQPVB9rUvwmV1fZQoaAZoCWgPQwhUxr/POABkQJSGlFKUaBVN6ANoFkdA9UH3AnQY13V9lChoBmgJaA9DCLABEeLKW2JAlIaUUpRoFU3oA2gWR0D1QgNT4cm0dX2UKGgGaAloD0MIa5vicVFEYkCUhpRSlGgVTegDaBZHQPVC0T6KtPp1fZQoaAZoCWgPQwiZ8iGomkZmQJSGlFKUaBVN6ANoFkdA9ULVgdsBQ3V9lChoBmgJaA9DCDhJ88e0LWhAlIaUUpRoFU3oA2gWR0D1Quz8vmHQdX2UKGgGaAloD0MINGWnH1SEY0CUhpRSlGgVTegDaBZHQPVC/lsnAqN1fZQoaAZoCWgPQwhLHk/LjzNnQJSGlFKUaBVN6ANoFkdA9UMA9gnc+XV9lChoBmgJaA9DCG3IPzMIq2ZAlIaUUpRoFU3oA2gWR0D1QxduwosqdX2UKGgGaAloD0MIuFonLkc/ZECUhpRSlGgVTegDaBZHQPVDIpcLSeB1fZQoaAZoCWgPQwhJ88e0NkxgQJSGlFKUaBVN6ANoFkdA9UMnNTtLMHV9lChoBmgJaA9DCJMcsKvJ3mZAlIaUUpRoFU3oA2gWR0D1Qyue8PFvdX2UKGgGaAloD0MIoBnEB/Z6YkCUhpRSlGgVTegDaBZHQPVDLF5Rjz91fZQoaAZoCWgPQwis4SL3dFpjQJSGlFKUaBVN6ANoFkdA9UMsghStNnV9lChoBmgJaA9DCKVKlL0lH2NAlIaUUpRoFU3oA2gWR0D1Qy1fbKzSdX2UKGgGaAloD0MILQsm/qjfY0CUhpRSlGgVTegDaBZHQPVDMUYZVGV1fZQoaAZoCWgPQwhYIHpSJjZkQJSGlFKUaBVN6ANoFkdA9UMxut4iYHV9lChoBmgJaA9DCD0Og/krk2VAlIaUUpRoFU3oA2gWR0D1QzILzf78dX2UKGgGaAloD0MIU7MHWoH9YUCUhpRSlGgVTegDaBZHQPVDQpg3Lmp1fZQoaAZoCWgPQwhTswdagZxQQJSGlFKUaBVLuWgWR0D1Q0aKJEYwdX2UKGgGaAloD0MIIm5OJQOrY0CUhpRSlGgVTegDaBZHQPVDUcep4r11fZQoaAZoCWgPQwjWOQZkr0NmQJSGlFKUaBVN6ANoFkdA9UNVvIwM6XV9lChoBmgJaA9DCMGQ1a0e/GNAlIaUUpRoFU3oA2gWR0D1Q21PykKvdX2UKGgGaAloD0MI4lmCjICGY0CUhpRSlGgVTegDaBZHQPVDfd1q33J1fZQoaAZoCWgPQwg3ixcLQ45mQJSGlFKUaBVN6ANoFkdA9UOAX2RJVnV9lChoBmgJaA9DCE8+Pbbl62dAlIaUUpRoFU3oA2gWR0D1Q5h0+1SgdX2UKGgGaAloD0MIcAnAP6WCZkCUhpRSlGgVTegDaBZHQPVDor3WWhR1fZQoaAZoCWgPQwjGFoIcFHZiQJSGlFKUaBVN6ANoFkdA9UOnFXiiqXV9lChoBmgJaA9DCA+BI4EGHmVAlIaUUpRoFU3oA2gWR0D1Q6uJWeYldX2UKGgGaAloD0MIlPdxNMeUZECUhpRSlGgVTegDaBZHQPVDrEzJp351fZQoaAZoCWgPQwhGDDuMyRFlQJSGlFKUaBVN6ANoFkdA9UOsddNWVHV9lChoBmgJaA9DCCrj32dcm2FAlIaUUpRoFU3oA2gWR0D1Q61jFAE/dX2UKGgGaAloD0MIkUYFTrbDS0CUhpRSlGgVS6poFkdA9UOvKLGaQXV9lChoBmgJaA9DCOnvpfAg72ZAlIaUUpRoFU3oA2gWR0D1Q7FGEf1ZdX2UKGgGaAloD0MIP5C8cyitaUCUhpRSlGgVTegDaBZHQPVDsg4rBj51fZQoaAZoCWgPQwix22eVmaZkQJSGlFKUaBVN6ANoFkdA9UPCbIDHO3V9lChoBmgJaA9DCKHyr+UVUGJAlIaUUpRoFU3oA2gWR0D1Q8ZjQRf4dX2UKGgGaAloD0MIERjrGxg4YUCUhpRSlGgVTegDaBZHQPVEoGF8G9p1fZQoaAZoCWgPQwjlRpG1hn9mQJSGlFKUaBVN6ANoFkdA9USkUZaV2XV9lChoBmgJaA9DCEbSbvQxI05AlIaUUpRoFUuQaBZHQPVEtvDKoyd1fZQoaAZoCWgPQwgGZ/D3izdfQJSGlFKUaBVN6ANoFkdA9US7oqwyI3V9lChoBmgJaA9DCGJlNPL5UWVAlIaUUpRoFU3oA2gWR0D1RMr7Qb++dX2UKGgGaAloD0MIUMdjBqqWYUCUhpRSlGgVTegDaBZHQPVEzYw9JSR1fZQoaAZoCWgPQwgRj8TLU/BiQJSGlFKUaBVN6ANoFkdA9UTrp+x4ZHV9lChoBmgJaA9DCB5QNuWKTmJAlIaUUpRoFU3oA2gWR0D1RO/ejEehdX2UKGgGaAloD0MI5zbhXpmNYkCUhpRSlGgVTegDaBZHQPVE9CmXPZ91fZQoaAZoCWgPQwgw2uOF9ItkQJSGlFKUaBVN6ANoFkdA9UT08NlRQHV9lChoBmgJaA9DCGK9USvMD2NAlIaUUpRoFU3oA2gWR0D1RPUUUO/ddX2UKGgGaAloD0MIGLSQgNHOaECUhpRSlGgVTegDaBZHQPVE9f+l0o11fZQoaAZoCWgPQwjnGJC9XsBjQJSGlFKUaBVN6ANoFkdA9UT31CPZI3V9lChoBmgJaA9DCILn3sOlWWFAlIaUUpRoFU3oA2gWR0D1RPnw0O3EdX2UKGgGaAloD0MIVG8NbBWzY0CUhpRSlGgVTegDaBZHQPVE+rboKUp1fZQoaAZoCWgPQwgdO6jEdfZiQJSGlFKUaBVN6ANoFkdA9UUMwKBuoHV9lChoBmgJaA9DCG9nX3mQC19AlIaUUpRoFU3oA2gWR0D1RRCigkC4dX2UKGgGaAloD0MIm3XG90VjYECUhpRSlGgVTegDaBZHQPVFHMPnSv11fZQoaAZoCWgPQwh6UiY1tOFkQJSGlFKUaBVN6ANoFkdA9UUx6A4GU3V9lChoBmgJaA9DCE1okljSE2hAlIaUUpRoFU3oA2gWR0D1RTaIKMNudX2UKGgGaAloD0MIFVYqqCieYkCUhpRSlGgVTegDaBZHQPVFRQRlHz91fZQoaAZoCWgPQwgLDFnd6mRmQJSGlFKUaBVN6ANoFkdA9UVHUlNUO3V9lChoBmgJaA9DCDmc+dUczGFAlIaUUpRoFU3oA2gWR0D1RWcnVoYfdX2UKGgGaAloD0MIy9jQzf4QZUCUhpRSlGgVTegDaBZHQPVFa4khRqJ1fZQoaAZoCWgPQwjPSIRGMHVlQJSGlFKUaBVN6ANoFkdA9UVvwfhddHV9lChoBmgJaA9DCNS4N7/hlmRAlIaUUpRoFU3oA2gWR0D1RXCHQyAQdX2UKGgGaAloD0MI1ub/VcfIZECUhpRSlGgVTegDaBZHQPVFcKt0V8F1fZQoaAZoCWgPQwjWpxyTxXJlQJSGlFKUaBVN6ANoFkdA9UVxgXdj5XV9lChoBmgJaA9DCB+94T5y0WZAlIaUUpRoFU3oA2gWR0D1RXNMSK3vdX2UKGgGaAloD0MIrI2xE153Z0CUhpRSlGgVTegDaBZHQPVFdW7Wd3B1fZQoaAZoCWgPQwhupGyRtCJlQJSGlFKUaBVN6ANoFkdA9UV2KTbFj3V9lChoBmgJaA9DCDjb3JieYVBAlIaUUpRoFUuXaBZHQPVFf7HQyAR1fZQoaAZoCWgPQwimtWlsrwpjQJSGlFKUaBVN6ANoFkdA9UWFnIEKV3V9lChoBmgJaA9DCMzxCkRPnkBAlIaUUpRoFUvJaBZHQPVFhg87p3Z1fZQoaAZoCWgPQwjwTj49tghjQJSGlFKUaBVN6ANoFkdA9UWJocvM83V9lChoBmgJaA9DCMA9z5+2FGhAlIaUUpRoFU3oA2gWR0D1RZSqebuudX2UKGgGaAloD0MIgzRj0XRQRkCUhpRSlGgVS75oFkdA9UWVYllbvHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:004cffaf1ba2b113eb7f50233a9e85f95e7fb7ebdebadab552a266e54b9d397b
3
- size 147400
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34a72b7322134f217db487049cefec4c9a02636cd572db781984ddc5f3f8b3fe
3
+ size 147425
ppo-LunarLander-v2/data CHANGED
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1674174869100080599,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa22r3D0T+6386UskVh6zDWvbM7770PMwAAgD8AAAAAZkatPFWbmz46tnW9Bq6FvkbhUDwok/m8AAAAAAAAAAA9CqC+qRQwPZH+nT2KODI86bjgvijmTT0AAIA/AACAP2owc755RJI/tW8Dvy0T8b4vPIS+rU/NvQAAAAAAAAAA81iAPewpz7lBKp+2os7UsegaVDsdcrs1AACAPwAAgD/NivC9HEh/vBqvNj1ppgy96Ff7PQUb4z0AAIA/AACAP5owqz2P+ku6JGpCuwVXkLbRkfQ6q3RlOgAAgD8AAAAAZgR5PLR38z3m7H++/204vl3llb1jT4i8AAAAAAAAAADzMI69g2VOP2LAA74NP5i+9S5yvbPtNL0AAAAAAAAAABrCN73CJSk/5qxuPElys74VrPm8uodIPQAAAAAAAAAAzv/XvjAPfD+EfT2+VMLSvgfVeb4xmpY9AAAAAAAAAAAgZDO+C6gYP815CT094c++hG1nvS1JfbsAAAAAAAAAAA1MJT55FFc/RU5MPuAh0b5ngj0+D2U7vQAAAAAAAAAAGvzfvT1aALmq6oG7NBp+OBCVxbu9FXc5AACAPwAAAADaVri9KThduuhCaDpeu/M1nkGrukBriLkAAIA/AAAAAGb+WTxcE2i6ZvUhufLnibQIV3y6uLo6OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,21 +69,21 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEce6uA0mcUCUhpRSlIwBbJRNuwKMAXSUR0DD/8FcW0qpdX2UKGgGaAloD0MIEcZP417LbECUhpRSlGgVTXEBaBZHQMP/8nWJ79h1fZQoaAZoCWgPQwi+LsN/ukBmQJSGlFKUaBVN6ANoFkdAxAA8kGiYcHV9lChoBmgJaA9DCHYb1H5rGXBAlIaUUpRoFU2rAWgWR0DEAEOHck+pdX2UKGgGaAloD0MIu9OdJ56Kb0CUhpRSlGgVTfcCaBZHQMQAYXZf2K51fZQoaAZoCWgPQwipMSHmkphsQJSGlFKUaBVNdwJoFkdAxABt5/LDAXV9lChoBmgJaA9DCAu2EU/2OG5AlIaUUpRoFU2dAWgWR0DEAILfHggpdX2UKGgGaAloD0MIv5oDBPMWcECUhpRSlGgVTT4BaBZHQMQAiPwVj7R1fZQoaAZoCWgPQwiPcjCbAFFHQJSGlFKUaBVLxmgWR0DEAJiuwHJLdX2UKGgGaAloD0MIgPChRAtvcUCUhpRSlGgVTaMBaBZHQMQAtCswL3N1fZQoaAZoCWgPQwiHb2HdOAJwQJSGlFKUaBVNZQFoFkdAxADRZTQ3P3V9lChoBmgJaA9DCPLQd7ey0EFAlIaUUpRoFUvIaBZHQMQA5mZ/kNp1fZQoaAZoCWgPQwhSK0zf60ZvQJSGlFKUaBVNEQJoFkdAxAD5tY0VJ3V9lChoBmgJaA9DCOT5DKg35z9AlIaUUpRoFUvEaBZHQMQBIhfBvaV1fZQoaAZoCWgPQwgurBvvjohCQJSGlFKUaBVLtGgWR0DEASbe9Ba+dX2UKGgGaAloD0MIPnYXKCmMOUCUhpRSlGgVS9FoFkdAxAFc+WWyDHV9lChoBmgJaA9DCH089N3tCHFAlIaUUpRoFU0MAmgWR0DEAWg1zhgmdX2UKGgGaAloD0MINXugFRhyRUCUhpRSlGgVS8NoFkdAxAGIIhQm/nV9lChoBmgJaA9DCNf34SChvHJAlIaUUpRoFU2hAWgWR0DEAZTWmP5pdX2UKGgGaAloD0MIs5lDUgtDb0CUhpRSlGgVTYYBaBZHQMQBoZJK8L91fZQoaAZoCWgPQwjlfLH3YgZvQJSGlFKUaBVNkwFoFkdAxAHMPKdQPHV9lChoBmgJaA9DCB2u1R72g3FAlIaUUpRoFU2xAWgWR0DEAdBKDkELdX2UKGgGaAloD0MIntLB+j8NbUCUhpRSlGgVTREBaBZHQMQCCzbnHNp1fZQoaAZoCWgPQwggtYmT+9EzQJSGlFKUaBVLymgWR0DEAg/OY6XCdX2UKGgGaAloD0MILUKxFTRkb0CUhpRSlGgVTRwDaBZHQMQE7GhmGud1fZQoaAZoCWgPQwjPTgZHyUVsQJSGlFKUaBVNcgNoFkdAxAT3eruIAXV9lChoBmgJaA9DCD+Ne/MbUmJAlIaUUpRoFU3oA2gWR0DEBP3Q8fV7dX2UKGgGaAloD0MIelG7X0WAckCUhpRSlGgVTTkBaBZHQMQFADmjj711fZQoaAZoCWgPQwiNQpJZvRFPQJSGlFKUaBVL52gWR0DEBSj3M6ikdX2UKGgGaAloD0MIHsL4aVw9bECUhpRSlGgVS+toFkdAxAUw+hXbNHV9lChoBmgJaA9DCCrj32dch3BAlIaUUpRoFU1YAWgWR0DEBVzH6uW9dX2UKGgGaAloD0MIz7uxoDD4YkCUhpRSlGgVTegDaBZHQMQFYqeCkGl1fZQoaAZoCWgPQwgH8BZIEAlwQJSGlFKUaBVN+QFoFkdAxAVoQFLWZ3V9lChoBmgJaA9DCFnDRe5pUGZAlIaUUpRoFU3oA2gWR0DEBXsXYUWVdX2UKGgGaAloD0MIUMb4MHtwb0CUhpRSlGgVTV0CaBZHQMQFi9Zq20B1fZQoaAZoCWgPQwj+D7BW7cRGQJSGlFKUaBVL1WgWR0DEBarPyCnQdX2UKGgGaAloD0MI3SIw1rd0cECUhpRSlGgVTWIBaBZHQMQFzcnVoYh1fZQoaAZoCWgPQwj2fqMdtylzQJSGlFKUaBVNLgJoFkdAxAX5CBPKuHV9lChoBmgJaA9DCFIrTN9rfDVAlIaUUpRoFUvEaBZHQMQGGjhcZ+B1fZQoaAZoCWgPQwgjZvZ5THZxQJSGlFKUaBVNcwFoFkdAxAYnzshPkHV9lChoBmgJaA9DCPF/R1SoCHBAlIaUUpRoFU0MAWgWR0DEBjyxTsIFdX2UKGgGaAloD0MI0a3X9CDxcECUhpRSlGgVS/BoFkdAxAZUepXIVHV9lChoBmgJaA9DCAk3GVUGBW5AlIaUUpRoFU1IAWgWR0DEBmwTmGM5dX2UKGgGaAloD0MIVvKxu8AScUCUhpRSlGgVTVQBaBZHQMQGg2OyVwB1fZQoaAZoCWgPQwiJXdvbbapyQJSGlFKUaBVNPAJoFkdAxAaIGmDUVnV9lChoBmgJaA9DCP2k2qejWXBAlIaUUpRoFU2sAWgWR0DEBo6NKh+OdX2UKGgGaAloD0MIRSv3ArMKJ0CUhpRSlGgVS8doFkdAxAapHHWBjHV9lChoBmgJaA9DCDQtsTIaUnFAlIaUUpRoFUv8aBZHQMQGqfMGHHp1fZQoaAZoCWgPQwhmEYqtYHJwQJSGlFKUaBVNBAJoFkdAxAatxiobXHV9lChoBmgJaA9DCG78icoGWmJAlIaUUpRoFU3oA2gWR0DEBq8/MW43dX2UKGgGaAloD0MIhQg4hOpfckCUhpRSlGgVTYYBaBZHQMQG9brLQol1fZQoaAZoCWgPQwipEfqZOsNxQJSGlFKUaBVNQAFoFkdAxAcqmpEQXnV9lChoBmgJaA9DCCXNH9Pa9nBAlIaUUpRoFU1DAWgWR0DEB1BnlGPQdX2UKGgGaAloD0MIhhvw+eFwYUCUhpRSlGgVTegDaBZHQMQHa02LpA51fZQoaAZoCWgPQwhGBrmLMIxQQJSGlFKUaBVL32gWR0DEB2tvXK8tdX2UKGgGaAloD0MIkUQvo9isbkCUhpRSlGgVTT8BaBZHQMQHk8Rcu8N1fZQoaAZoCWgPQwhavcPt0HJHQJSGlFKUaBVLv2gWR0DEB55mCiAUdX2UKGgGaAloD0MI8DSZ8fZtcECUhpRSlGgVTSYDaBZHQMQH2JUo8ZF1fZQoaAZoCWgPQwi+Zrls9EZxQJSGlFKUaBVN5gFoFkdAxAf1XFtKqXV9lChoBmgJaA9DCHDNHf0vm3JAlIaUUpRoFU2wAWgWR0DEB/6XpnpTdX2UKGgGaAloD0MInRIQk3A8cECUhpRSlGgVTUgCaBZHQMQIHDzAeq91fZQoaAZoCWgPQwgkDW5rC1llQJSGlFKUaBVN6ANoFkdAxArTTuv2XnV9lChoBmgJaA9DCAcoDTWKWXBAlIaUUpRoFUv5aBZHQMQK2y/TLGJ1fZQoaAZoCWgPQwhy+nq+Ju1wQJSGlFKUaBVNQAFoFkdAxArbRVp9JHV9lChoBmgJaA9DCIunHmkwiHFAlIaUUpRoFU1CAWgWR0DECv2JLuhLdX2UKGgGaAloD0MIQSlauRdXcUCUhpRSlGgVS/xoFkdAxAsBMV1wHnV9lChoBmgJaA9DCHuCxHZ39XFAlIaUUpRoFU2IAmgWR0DECyrcdo38dX2UKGgGaAloD0MIdzHNdK91UUCUhpRSlGgVS7NoFkdAxAtkuoxYaHV9lChoBmgJaA9DCF6CUx/IPXJAlIaUUpRoFU3EAmgWR0DEC3pIQOFydX2UKGgGaAloD0MICvKzkev7b0CUhpRSlGgVTZgBaBZHQMQLk0yYXwd1fZQoaAZoCWgPQwjDZoALslpxQJSGlFKUaBVN/wJoFkdAxAvdRFZxJnV9lChoBmgJaA9DCLe3W5IDGWxAlIaUUpRoFU1MAWgWR0DEC/3aakRBdX2UKGgGaAloD0MIVb5nJELgcUCUhpRSlGgVTSEBaBZHQMQMAwJgLJF1fZQoaAZoCWgPQwhBtixfl9ZwQJSGlFKUaBVNPwFoFkdAxAwZUMoc73V9lChoBmgJaA9DCDgUPltHNXJAlIaUUpRoFU3nAWgWR0DEDBs495hSdX2UKGgGaAloD0MITDeJQSDscUCUhpRSlGgVTcoBaBZHQMQMIB6KLsN1fZQoaAZoCWgPQwhPsWoQZlxwQJSGlFKUaBVNKwFoFkdAxAw6VHFxXHV9lChoBmgJaA9DCMH+69w0I29AlIaUUpRoFU29A2gWR0DEDII2sJY1dX2UKGgGaAloD0MIntLB+j/Mb0CUhpRSlGgVTTcBaBZHQMQMgkxyn1p1fZQoaAZoCWgPQwiHFAMk2gBzQJSGlFKUaBVN3gJoFkdAxAyGy9EkSnV9lChoBmgJaA9DCHEBaJQuFSdAlIaUUpRoFUvKaBZHQMQMkyLAHml1fZQoaAZoCWgPQwjFO8CTFtJEQJSGlFKUaBVLrWgWR0DEDJhl+VkddX2UKGgGaAloD0MIO8Q/bOmfcECUhpRSlGgVTTsBaBZHQMQMmTAN5MV1fZQoaAZoCWgPQwi2vd2SHDVgQJSGlFKUaBVN6ANoFkdAxAykNqgyunV9lChoBmgJaA9DCNZSQNr/CCJAlIaUUpRoFUvEaBZHQMQMwbJGOMl1fZQoaAZoCWgPQwgZq83/KzBuQJSGlFKUaBVNCwFoFkdAxAzlQtz0YnV9lChoBmgJaA9DCNpyLsVVfm9AlIaUUpRoFU0WAWgWR0DEDSKraM72dX2UKGgGaAloD0MIxAjh0cbeUUCUhpRSlGgVS7hoFkdAxA0tLTx5LXV9lChoBmgJaA9DCI3SpX9JyjpAlIaUUpRoFUvZaBZHQMQNOLeZXuF1fZQoaAZoCWgPQwiuuDgqN5EKQJSGlFKUaBVLxmgWR0DEDUfvttygdX2UKGgGaAloD0MIH0sfuuDtcUCUhpRSlGgVTa4BaBZHQMQNhjKPn0V1fZQoaAZoCWgPQwiKOnMPCVBuQJSGlFKUaBVNOQFoFkdAxA2GUuctoXV9lChoBmgJaA9DCPw07s3vuXBAlIaUUpRoFU1GAWgWR0DEDZBsyi22dX2UKGgGaAloD0MIXJAty9drb0CUhpRSlGgVTQIBaBZHQMQNwSSmqHZ1fZQoaAZoCWgPQwhYrUz4pU4SQJSGlFKUaBVLwGgWR0DEDdyGi5/cdX2UKGgGaAloD0MIHEC/718scUCUhpRSlGgVTZkBaBZHQMQN6cTakAR1fZQoaAZoCWgPQwgj+UogpelhQJSGlFKUaBVN6ANoFkdAxA329gWrO3V9lChoBmgJaA9DCFYrE35p0nBAlIaUUpRoFU2kA2gWR0DEDf34EfT1dX2UKGgGaAloD0MIr9LddbagcUCUhpRSlGgVTUUCaBZHQMQODL5qM3t1fZQoaAZoCWgPQwhf1O5XAWZkQJSGlFKUaBVN6ANoFkdAxA4TEc81XXVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
- "n_steps": 1024,
80
- "gamma": 0.99,
81
  "gae_lambda": 0.99,
82
- "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 2031616,
46
+ "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1674250808773494007,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpHBL24vva54Cc/uiIOHjaH9i674rxeOQAAgD8AAIA/Zr32vC7Rrz8Oexa//h/FvlKQczx8PT+8AAAAAAAAAAAzTwc8Hz3wuf4yyDtxfcY3JozguoScjTYAAIA/AACAPzN7ibtS0Pe5+rrBurxESzQtjzi6oPTiOQAAgD8AAIA/zaBNPClQLbp29ou7u2UGuZN0HjnCspM4AACAPwAAgD9NDaa94WCBuvXy/7k5izY1M5LGOgpKFTkAAIA/AACAP2atjbz2RC669GSVu5T26jfSTpC5/hMitwAAgD8AAIA/mo3HvFwHXLoj6US6XrbstQqrhDva52E5AACAPwAAgD8z3iG9b/0DPpuP0D1h4om+oJWhPFIMET4AAAAAAAAAAGbm0TuJjgM9QJBVOwYPnb6uSsq8QYrBPAAAAAAAAAAAZgbVvI82TLq6m+O6JJIbtnF2kztugQU6AACAPwAAgD96YSS+17xeuzj1qLs+KQ25+EeSPKUC8TkAAIA/AACAP3NdiD0b87w/blEPP6H0BD6Xgtw83pJiPgAAAAAAAAAAs07bPcO9MroKgps5VU4LNcnxcjtn27W4AACAPwAAgD9myNo8XGtkulAZ87r8HD+210nKOjZaCToAAIA/AACAP42bYr7Qmt8+NqWwPgmOuL4rl8W8OaCbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu9HHfMA0aECUhpRSlIwBbJRN6AOMAXSUR0D1QWU09QoDdX2UKGgGaAloD0MIjq89syRaZkCUhpRSlGgVTegDaBZHQPVBbUlLOA11fZQoaAZoCWgPQwg1tteC3u9mQJSGlFKUaBVN6ANoFkdA9UFuwh4dIXV9lChoBmgJaA9DCLfte9Rf5GBAlIaUUpRoFU3oA2gWR0D1QXK7w8W9dX2UKGgGaAloD0MITMecZ+wKZkCUhpRSlGgVTegDaBZHQPVBdretSyd1fZQoaAZoCWgPQwgSh2wg3dhnQJSGlFKUaBVN6ANoFkdA9UF3WrwOOXV9lChoBmgJaA9DCMgIqHAErmFAlIaUUpRoFU3oA2gWR0D1QXd9YOlPdX2UKGgGaAloD0MIUI4CREGJZUCUhpRSlGgVTegDaBZHQPVBeEUEgW91fZQoaAZoCWgPQwgoZOdt7HNkQJSGlFKUaBVN6ANoFkdA9UF7dx2jf3V9lChoBmgJaA9DCEBpqFFISWdAlIaUUpRoFU3oA2gWR0D1QXuTLW7OdX2UKGgGaAloD0MI4UIewY2iQUCUhpRSlGgVS4RoFkdA9UF71z6rNnV9lChoBmgJaA9DCATLETKQFmlAlIaUUpRoFU3oA2gWR0D1QXwUPhAGdX2UKGgGaAloD0MIweYcPBPoTUCUhpRSlGgVS5loFkdA9UGIi83+/HV9lChoBmgJaA9DCPMgPUUOeGRAlIaUUpRoFU3oA2gWR0D1QZdZjx0/dX2UKGgGaAloD0MIiSZQxKKuZUCUhpRSlGgVTegDaBZHQPVBm9U4rBl1fZQoaAZoCWgPQwj3WztREuhkQJSGlFKUaBVN6ANoFkdA9UGzTSThYXV9lChoBmgJaA9DCKJCdXNxSmdAlIaUUpRoFU3oA2gWR0D1QcRzqbBodX2UKGgGaAloD0MI/g+wVm2RZ0CUhpRSlGgVTegDaBZHQPVBx0WweNl1fZQoaAZoCWgPQwi1/MBVnppkQJSGlFKUaBVN6ANoFkdA9UHd7xAjZHV9lChoBmgJaA9DCCEhyhc0pGhAlIaUUpRoFU3oA2gWR0D1QefrDIikdX2UKGgGaAloD0MI/MOWHs1YZUCUhpRSlGgVTegDaBZHQPVB7DPt2LZ1fZQoaAZoCWgPQwiIK2fvDJVkQJSGlFKUaBVN6ANoFkdA9UHwpTMq0HV9lChoBmgJaA9DCNGvrZ9+XGJAlIaUUpRoFU3oA2gWR0D1QfFtBfKIdX2UKGgGaAloD0MIaqSl8va/ZECUhpRSlGgVTegDaBZHQPVB8ZdTo+x1fZQoaAZoCWgPQwh23VuRmBRhQJSGlFKUaBVN6ANoFkdA9UHyj8gp0HV9lChoBmgJaA9DCDYgQlw5sF5AlIaUUpRoFU3oA2gWR0D1QfYynk1edX2UKGgGaAloD0MIf0xr09i8YECUhpRSlGgVTegDaBZHQPVB9rUvwmV1fZQoaAZoCWgPQwhUxr/POABkQJSGlFKUaBVN6ANoFkdA9UH3AnQY13V9lChoBmgJaA9DCLABEeLKW2JAlIaUUpRoFU3oA2gWR0D1QgNT4cm0dX2UKGgGaAloD0MIa5vicVFEYkCUhpRSlGgVTegDaBZHQPVC0T6KtPp1fZQoaAZoCWgPQwiZ8iGomkZmQJSGlFKUaBVN6ANoFkdA9ULVgdsBQ3V9lChoBmgJaA9DCDhJ88e0LWhAlIaUUpRoFU3oA2gWR0D1Quz8vmHQdX2UKGgGaAloD0MINGWnH1SEY0CUhpRSlGgVTegDaBZHQPVC/lsnAqN1fZQoaAZoCWgPQwhLHk/LjzNnQJSGlFKUaBVN6ANoFkdA9UMA9gnc+XV9lChoBmgJaA9DCG3IPzMIq2ZAlIaUUpRoFU3oA2gWR0D1QxduwosqdX2UKGgGaAloD0MIuFonLkc/ZECUhpRSlGgVTegDaBZHQPVDIpcLSeB1fZQoaAZoCWgPQwhJ88e0NkxgQJSGlFKUaBVN6ANoFkdA9UMnNTtLMHV9lChoBmgJaA9DCJMcsKvJ3mZAlIaUUpRoFU3oA2gWR0D1Qyue8PFvdX2UKGgGaAloD0MIoBnEB/Z6YkCUhpRSlGgVTegDaBZHQPVDLF5Rjz91fZQoaAZoCWgPQwis4SL3dFpjQJSGlFKUaBVN6ANoFkdA9UMsghStNnV9lChoBmgJaA9DCKVKlL0lH2NAlIaUUpRoFU3oA2gWR0D1Qy1fbKzSdX2UKGgGaAloD0MILQsm/qjfY0CUhpRSlGgVTegDaBZHQPVDMUYZVGV1fZQoaAZoCWgPQwhYIHpSJjZkQJSGlFKUaBVN6ANoFkdA9UMxut4iYHV9lChoBmgJaA9DCD0Og/krk2VAlIaUUpRoFU3oA2gWR0D1QzILzf78dX2UKGgGaAloD0MIU7MHWoH9YUCUhpRSlGgVTegDaBZHQPVDQpg3Lmp1fZQoaAZoCWgPQwhTswdagZxQQJSGlFKUaBVLuWgWR0D1Q0aKJEYwdX2UKGgGaAloD0MIIm5OJQOrY0CUhpRSlGgVTegDaBZHQPVDUcep4r11fZQoaAZoCWgPQwjWOQZkr0NmQJSGlFKUaBVN6ANoFkdA9UNVvIwM6XV9lChoBmgJaA9DCMGQ1a0e/GNAlIaUUpRoFU3oA2gWR0D1Q21PykKvdX2UKGgGaAloD0MI4lmCjICGY0CUhpRSlGgVTegDaBZHQPVDfd1q33J1fZQoaAZoCWgPQwg3ixcLQ45mQJSGlFKUaBVN6ANoFkdA9UOAX2RJVnV9lChoBmgJaA9DCE8+Pbbl62dAlIaUUpRoFU3oA2gWR0D1Q5h0+1SgdX2UKGgGaAloD0MIcAnAP6WCZkCUhpRSlGgVTegDaBZHQPVDor3WWhR1fZQoaAZoCWgPQwjGFoIcFHZiQJSGlFKUaBVN6ANoFkdA9UOnFXiiqXV9lChoBmgJaA9DCA+BI4EGHmVAlIaUUpRoFU3oA2gWR0D1Q6uJWeYldX2UKGgGaAloD0MIlPdxNMeUZECUhpRSlGgVTegDaBZHQPVDrEzJp351fZQoaAZoCWgPQwhGDDuMyRFlQJSGlFKUaBVN6ANoFkdA9UOsddNWVHV9lChoBmgJaA9DCCrj32dcm2FAlIaUUpRoFU3oA2gWR0D1Q61jFAE/dX2UKGgGaAloD0MIkUYFTrbDS0CUhpRSlGgVS6poFkdA9UOvKLGaQXV9lChoBmgJaA9DCOnvpfAg72ZAlIaUUpRoFU3oA2gWR0D1Q7FGEf1ZdX2UKGgGaAloD0MIP5C8cyitaUCUhpRSlGgVTegDaBZHQPVDsg4rBj51fZQoaAZoCWgPQwix22eVmaZkQJSGlFKUaBVN6ANoFkdA9UPCbIDHO3V9lChoBmgJaA9DCKHyr+UVUGJAlIaUUpRoFU3oA2gWR0D1Q8ZjQRf4dX2UKGgGaAloD0MIERjrGxg4YUCUhpRSlGgVTegDaBZHQPVEoGF8G9p1fZQoaAZoCWgPQwjlRpG1hn9mQJSGlFKUaBVN6ANoFkdA9USkUZaV2XV9lChoBmgJaA9DCEbSbvQxI05AlIaUUpRoFUuQaBZHQPVEtvDKoyd1fZQoaAZoCWgPQwgGZ/D3izdfQJSGlFKUaBVN6ANoFkdA9US7oqwyI3V9lChoBmgJaA9DCGJlNPL5UWVAlIaUUpRoFU3oA2gWR0D1RMr7Qb++dX2UKGgGaAloD0MIUMdjBqqWYUCUhpRSlGgVTegDaBZHQPVEzYw9JSR1fZQoaAZoCWgPQwgRj8TLU/BiQJSGlFKUaBVN6ANoFkdA9UTrp+x4ZHV9lChoBmgJaA9DCB5QNuWKTmJAlIaUUpRoFU3oA2gWR0D1RO/ejEehdX2UKGgGaAloD0MI5zbhXpmNYkCUhpRSlGgVTegDaBZHQPVE9CmXPZ91fZQoaAZoCWgPQwgw2uOF9ItkQJSGlFKUaBVN6ANoFkdA9UT08NlRQHV9lChoBmgJaA9DCGK9USvMD2NAlIaUUpRoFU3oA2gWR0D1RPUUUO/ddX2UKGgGaAloD0MIGLSQgNHOaECUhpRSlGgVTegDaBZHQPVE9f+l0o11fZQoaAZoCWgPQwjnGJC9XsBjQJSGlFKUaBVN6ANoFkdA9UT31CPZI3V9lChoBmgJaA9DCILn3sOlWWFAlIaUUpRoFU3oA2gWR0D1RPnw0O3EdX2UKGgGaAloD0MIVG8NbBWzY0CUhpRSlGgVTegDaBZHQPVE+rboKUp1fZQoaAZoCWgPQwgdO6jEdfZiQJSGlFKUaBVN6ANoFkdA9UUMwKBuoHV9lChoBmgJaA9DCG9nX3mQC19AlIaUUpRoFU3oA2gWR0D1RRCigkC4dX2UKGgGaAloD0MIm3XG90VjYECUhpRSlGgVTegDaBZHQPVFHMPnSv11fZQoaAZoCWgPQwh6UiY1tOFkQJSGlFKUaBVN6ANoFkdA9UUx6A4GU3V9lChoBmgJaA9DCE1okljSE2hAlIaUUpRoFU3oA2gWR0D1RTaIKMNudX2UKGgGaAloD0MIFVYqqCieYkCUhpRSlGgVTegDaBZHQPVFRQRlHz91fZQoaAZoCWgPQwgLDFnd6mRmQJSGlFKUaBVN6ANoFkdA9UVHUlNUO3V9lChoBmgJaA9DCDmc+dUczGFAlIaUUpRoFU3oA2gWR0D1RWcnVoYfdX2UKGgGaAloD0MIy9jQzf4QZUCUhpRSlGgVTegDaBZHQPVFa4khRqJ1fZQoaAZoCWgPQwjPSIRGMHVlQJSGlFKUaBVN6ANoFkdA9UVvwfhddHV9lChoBmgJaA9DCNS4N7/hlmRAlIaUUpRoFU3oA2gWR0D1RXCHQyAQdX2UKGgGaAloD0MI1ub/VcfIZECUhpRSlGgVTegDaBZHQPVFcKt0V8F1fZQoaAZoCWgPQwjWpxyTxXJlQJSGlFKUaBVN6ANoFkdA9UVxgXdj5XV9lChoBmgJaA9DCB+94T5y0WZAlIaUUpRoFU3oA2gWR0D1RXNMSK3vdX2UKGgGaAloD0MIrI2xE153Z0CUhpRSlGgVTegDaBZHQPVFdW7Wd3B1fZQoaAZoCWgPQwhupGyRtCJlQJSGlFKUaBVN6ANoFkdA9UV2KTbFj3V9lChoBmgJaA9DCDjb3JieYVBAlIaUUpRoFUuXaBZHQPVFf7HQyAR1fZQoaAZoCWgPQwimtWlsrwpjQJSGlFKUaBVN6ANoFkdA9UWFnIEKV3V9lChoBmgJaA9DCMzxCkRPnkBAlIaUUpRoFUvJaBZHQPVFhg87p3Z1fZQoaAZoCWgPQwjwTj49tghjQJSGlFKUaBVN6ANoFkdA9UWJocvM83V9lChoBmgJaA9DCMA9z5+2FGhAlIaUUpRoFU3oA2gWR0D1RZSqebuudX2UKGgGaAloD0MIgzRj0XRQRkCUhpRSlGgVS75oFkdA9UWVYllbvHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
  "gae_lambda": 0.99,
82
+ "ent_coef": 0.02,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
+ "n_epochs": 5,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVDQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL2NocmlzL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjG0vaG9tZS9jaHJpcy9hbmFjb25kYTMvZW52cy9kZWVwX3JsX2NsYXNzX3VuaXQxL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:efe04056435e674cde6bf82af2c6efa75066d2e12865f2965f0ae05f1a828b94
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a63d9c8d5319695835814096a3b56bcad3b37072e7b292cd544ef25a5f0650ff
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a20441da6b85363f1ebc00024e87cd8e3b048ff015ad054e83713f5fcf8f994
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9135a8a7e562409cb41b931efd7d6d3f4776e76f13796846b0c4e92d8a82f83
3
  size 43201
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 251.18476887714655, "std_reward": 21.501564421169917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T15:59:11.369970"}
 
1
+ {"mean_reward": 270.602338439146, "std_reward": 18.96888330921968, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T17:15:27.683822"}