--- license: apache-2.0 pipeline_tag: reinforcement-learning tags: - Deep Reinforcement Learning - Combinatorial Optimization - Vehicle Routing Problem --- ![](./images/GREEDRL-Logo-Original-640.png) # 🤠GreedRL ## Overview - 🤠GreedRL is a Deep Reinforcement Learning (DRL) based solver that can solve various types of problems, such as TSP, VRPs (CVRP, VRPTW, VRPPD, etc), Order Batching Problem, Knapsack Problem, etc. - 🤠GreedRL achieves very high performance by running on GPU while generating high quality solutions. **1200 times faster** than [Google OR-Tools](https://developers.google.com/optimization) for large-scale (>=1000 nodes) CVRP, and the solution quality is improved by **about 3%**. ## 🏆Award - Entering the finalists of [INFORMS 2021 Franz Edelman Award](https://www.informs.org/Resource-Center/Video-Library/Edelman-Competition-Videos/2021-Edelman-Competition-Videos/2021-Edelman-Finalist-Alibaba) - Obtain [The Second Class Prize of Scientific and Technological Progress Award](https://www.ccf.org.cn/Awards/Awards/2022-11-08/776110.shtml). ## Editions We have delivered the following two editions of 🤠GreedRL for users. - **The Community Edition** is open source and available to [download](https://huggingface.co/Cainiao-AI/GreedRL). - **The Enterprise Edition** has a higher performance implementation than **The Community Edition** (about 50 times faster), especially when solving larg-scale problems. For more informations, please contact us. ## Architecture ![](./images/GREEDRL-Framwork_en.png) ## COPs Modeling examples ### Standard problems #### Capacitated Vehicle Routing Problem (CVRP)
CVRP ```python from greedrl.feature import * from greedrl.variable import * from greedrl.function import * from greedrl import Problem, Solution, Solver from greedrl import runner features = [continuous_feature('task_demand'), continuous_feature('worker_weight_limit'), continuous_feature('distance_matrix'), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), worker_variable('worker_weight_limit'), worker_used_resource('worker_used_weight', task_require='task_weight'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_task(self): # 已经完成的任务 mask = self.task_demand_now <= 0 # 车辆容量限制 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_end(self): return self.distance_last_to_this def step_task(self): return self.distance_last_to_this ```
#### Pickup and Delivery Problem with Time Windows (PDPTW)
PDPTW ```python from greedrl.model import runner from greedrl.feature import * from greedrl.variable import * from greedrl.function import * from greedrl import Problem, Solution, Solver features = [local_category('task_group'), global_category('task_priority', 2), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), feature_variable('task_group'), feature_variable('task_priority'), feature_variable('task_due_time2', feature='task_due_time'), task_variable('task_due_time'), task_variable('task_service_time'), task_variable('task_due_time_penalty'), worker_variable('worker_basic_cost'), worker_variable('worker_distance_cost'), worker_variable('worker_due_time'), worker_variable('worker_weight_limit'), worker_used_resource('worker_used_weight', task_require='task_weight'), worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time', 'worker_ready_time'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_worker_end(self): return task_group_split(self.task_group, self.task_demand_now <= 0) def mask_task(self): mask = self.task_demand_now <= 0 mask |= task_group_priority(self.task_group, self.task_priority, mask) worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task mask |= (worker_used_time > self.task_due_time2) & (self.task_priority == 0) # 容量约束 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_start(self): return self.worker_basic_cost def step_worker_end(self): feasible = self.worker_used_time <= self.worker_due_time return self.distance_last_to_this * self.worker_distance_cost, feasible def step_task(self): worker_used_time = self.worker_used_time - self.task_service_time feasible = worker_used_time <= self.task_due_time feasible &= worker_used_time <= self.worker_due_time cost = self.distance_last_to_this * self.worker_distance_cost return torch.where(feasible, cost, cost + self.task_due_time_penalty), feasible ```
#### VRP with Time Windows (VRPTW)
VRPTW ```python from greedrl import Problem, Solution, Solver from greedrl.feature import * from greedrl.variable import * from greedrl.function import * from greedrl.model import runner from greedrl.myenv import VrptwEnv features = [continuous_feature('worker_weight_limit'), continuous_feature('worker_ready_time'), continuous_feature('worker_due_time'), continuous_feature('worker_basic_cost'), continuous_feature('worker_distance_cost'), continuous_feature('task_demand'), continuous_feature('task_weight'), continuous_feature('task_ready_time'), continuous_feature('task_due_time'), continuous_feature('task_service_time'), continuous_feature('distance_matrix')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), feature_variable('task_due_time'), feature_variable('task_ready_time'), feature_variable('task_service_time'), worker_variable('worker_weight_limit'), worker_variable('worker_due_time'), worker_variable('worker_basic_cost'), worker_variable('worker_distance_cost'), worker_used_resource('worker_used_weight', task_require='task_weight'), worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time', 'worker_ready_time'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_task(self): # 已经完成的任务 mask = self.task_demand_now <= 0 # 车辆容量限制 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task mask |= worker_used_time > self.task_due_time worker_used_time = torch.max(worker_used_time, self.task_ready_time) worker_used_time += self.task_service_time worker_used_time += self.distance_task_to_end mask |= worker_used_time > self.worker_due_time[:, None] return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_start(self): return self.worker_basic_cost def step_worker_end(self): return self.distance_last_to_this * self.worker_distance_cost def step_task(self): return self.distance_last_to_this * self.worker_distance_cost ```
#### Travelling Salesman Problem (TSP)
TSP ```python from greedrl.feature import * from greedrl.variable import * from greedrl import Problem from greedrl import runner features = [continuous_feature('task_location'), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True), edge_variable('distance_last_to_loop', feature='distance_matrix', last_to_loop=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_task(self): mask = self.task_demand_now <= 0 return mask def mask_worker_end(self): return torch.any(self.task_demand_now > 0, 1) def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_end(self): return self.distance_last_to_loop def step_task(self): return self.distance_last_to_this ```
#### Split Delivery Vehicle Routing Problem (SDVRP)
SDVRP ```python from greedrl.feature import * from greedrl.variable import * from greedrl import Problem from greedrl import runner features = [continuous_feature('task_demand'), continuous_feature('worker_weight_limit'), continuous_feature('distance_matrix'), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), task_variable('task_weight_this', feature='task_weight'), worker_variable('worker_weight_limit'), worker_used_resource('worker_used_weight', task_require='task_weight'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True)] class Constraint: def do_task(self): worker_weight_limit = self.worker_weight_limit - self.worker_used_weight return torch.min(self.task_demand_this, worker_weight_limit // self.task_weight_this) def mask_task(self): mask = self.task_demand <= 0 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_weight > worker_weight_limit[:, None] return mask def finished(self): return torch.all(self.task_demand <= 0, 1) class Objective: def step_worker_end(self): return self.distance_last_to_this def step_task(self): return self.distance_last_to_this ```
### Real-world scenario problems In addition to being able to solve standard problems, 🤠GreedRL can also model and solve real-world scenario problems, like *Instant Delivery Service* and *Order Batching Problem*. #### Instant Delivery Service > Instant Delivery Service are widespread in order dispatching systems of courier delivery services ([Ele.me](https://www.ele.me/), [Meituan](https://waimai.meituan.com/), [UUPaotui](https://www.uupt.com/index.htm), etc). > Orders are generated in real-time. A number of vehicles are scheduled to serve orders from pickup locations to delivery locations while respecting vehicle capacity. The objective consists in minimizing both total delivery time and overtime penalty.
Instant Delivery Service ```python from greedrl.feature import * from greedrl.variable import * from greedrl.function import * from greedrl import Problem from greedrl import runner features = [local_category('task_order'), global_category('task_type', 2), global_category('task_new_order', 2), variable_feature('time_this_to_task'), continuous_feature('x_time_matrix'), continuous_feature('task_due_time_x'), continuous_feature('worker_task_mask')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), task_variable('task_pickup_this', feature='task_pickup'), task_variable('task_due_time_this', feature='task_due_time'), feature_variable('task_order', feature='task_order'), feature_variable('task_type', feature='task_type'), feature_variable('task_new_pickup', feature='task_new_pickup'), feature_variable('worker_task_mask', feature='worker_task_mask'), worker_count_now('worker_count_now', feature='worker_count'), worker_variable('worker_min_old_task_this', feature='worker_min_old_task'), worker_variable('worker_max_new_order_this', feature='worker_max_new_order'), worker_variable('worker_task_mask_this', feature='worker_task_mask'), worker_used_resource('worker_used_old_task', task_require='task_old'), worker_used_resource('worker_used_new_order', task_require='task_new_pickup'), worker_used_resource('worker_used_time', edge_require='time_matrix'), edge_variable('time_this_to_task', feature='x_time_matrix', this_to_task=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_worker_start(self): mask = self.worker_count_now <= 0 finished = self.task_demand_now <= 0 worker_task_mask = self.worker_task_mask | finished[:, None, :] mask |= torch.all(worker_task_mask, 2) return mask def mask_worker_end(self): mask = self.worker_used_old_task < self.worker_min_old_task_this mask |= task_group_split(self.task_order, self.task_demand_now <= 0) return mask def mask_task(self): mask = self.task_demand_now <= 0 mask |= task_group_priority(self.task_order, self.task_type, mask) worker_max_new_order = self.worker_max_new_order_this - self.worker_used_new_order mask |= self.task_new_pickup > worker_max_new_order[:, None] mask |= self.worker_task_mask_this return mask def finished(self): worker_mask = self.worker_count_now <= 0 task_mask = self.task_demand_now <= 0 worker_task_mask = worker_mask[:, :, None] | task_mask[:, None, :] worker_task_mask |= self.worker_task_mask batch_size = worker_task_mask.size(0) worker_task_mask = worker_task_mask.view(batch_size, -1) return worker_task_mask.all(1) class Objective: def step_task(self): over_time = (self.worker_used_time - self.task_due_time_this).clamp(min=0) pickup_time = self.worker_used_time * self.task_pickup_this return self.worker_used_time + over_time + pickup_time def step_finish(self): return self.task_demand_now.sum(1) * 1000 ```
#### Order Batching Problem > The Order Batching Problem is an optimization problem which occurs in a warehouse consists of designing a set of picking batches, such that each customer order (composed by a list of items) is assigned to exactly one batch, > and each batch has to be collected by a single picker. The objective consists in minimizing both total batching cost (a weighted sum of used numbers of areas, roadways and items) and penalty for exceeding loading limits of pickers.
Order Batching Problem ```python from greedrl import Problem, Solver from greedrl.feature import * from greedrl.variable import * from greedrl import runner features = [local_feature('task_area'), local_feature('task_roadway'), local_feature('task_area_group'), sparse_local_feature('task_item_id', 'task_item_num'), sparse_local_feature('task_item_owner_id', 'task_item_num'), variable_feature('worker_task_item'), variable_feature('worker_used_roadway'), variable_feature('worker_used_area')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_item_id'), feature_variable('task_item_num'), feature_variable('task_item_owner_id'), feature_variable('task_area'), feature_variable('task_area_group'), feature_variable('task_load'), feature_variable('task_group'), worker_variable('worker_load_limit'), worker_variable('worker_area_limit'), worker_variable('worker_area_group_limit'), worker_task_item('worker_task_item', item_id='task_item_id', item_num='task_item_num'), worker_task_item('worker_task_item_owner', item_id='task_item_owner_id', item_num='task_item_num'), worker_used_resource('worker_used_load', task_require='task_load'), worker_used_resource('worker_used_area', task_require='task_area'), worker_used_resource('worker_used_roadway', task_require='task_roadway'), worker_used_resource('worker_used_area_group', task_require='task_area_group')] class Constraint: def do_task(self): return self.task_demand_this def mask_worker_end(self): return self.worker_used_load < self.worker_load_limit def mask_task(self): # completed tasks mask = self.task_demand_now <= 0 # mask |= task_group_priority(self.task_group, self.task_out_stock_time, mask) NT = self.task_item_id.size(1) worker_task_item = self.worker_task_item[:, None, :] worker_task_item = worker_task_item.expand(-1, NT, -1) task_item_in_worker = worker_task_item.gather(2, self.task_item_id.long()) task_item_in_worker = (task_item_in_worker > 0) & (self.task_item_num > 0) worker_task_item_owner = self.worker_task_item_owner[:, None, :] worker_task_item_owner = worker_task_item_owner.expand(-1, NT, -1) task_item_owner_in_worker = worker_task_item_owner.gather(2, self.task_item_owner_id.long()) task_item_owner_in_worker = (task_item_owner_in_worker > 0) & (self.task_item_num > 0) # mask |= torch.any(task_item_in_worker & ~task_item_owner_in_worker, 2) worker_load_limit = self.worker_load_limit - self.worker_used_load mask |= (self.task_load > worker_load_limit[:, None]) task_area = self.task_area + self.worker_used_area[:, None, :] task_area_num = task_area.clamp(0, 1).sum(2, dtype=torch.int32) mask |= (task_area_num > self.worker_area_limit[:, None]) tak_area_group = self.task_area_group + self.worker_used_area_group[:, None, :] tak_area_group_num = tak_area_group.clamp(0, 1).sum(2, dtype=torch.int32) mask |= (tak_area_group_num > self.worker_area_group_limit[:, None]) return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_end(self): area_num = self.worker_used_area.clamp(0, 1).sum(1) roadway_num = self.worker_used_roadway.clamp(0, 1).sum(1) item_num = self.worker_task_item.clamp(0, 1).sum(1) penalty = (self.worker_load_limit - self.worker_used_load) * 10 return area_num * 100 + roadway_num * 10 + item_num + penalty ```
# # # Getting started ## Description We are delighted to release 🤠GreedRL Community Edition, as well as example of training and testing scripts for the standard Capacitated VRP (CVRP), you can download it and get started. ## Test environment 🤠GreedRL Community Edition has been tested on Ubuntu 18.04 with GCC compiler v7.5.0 and CUDA version 11.4, and a [Miniconda](https://docs.conda.io/en/latest/miniconda.html#system-requirements) distribution with Python 3.8. We recommend using a similar configuration to avoid any possiblem compilation issue. ## Installation First, clone the repository. ```aidl $ git clone https://huggingface.co/Cainiao-AI/GreedRL ``` Then, create and activate a python environment using conda, and install required packages. ```aidl $ conda create -n python38 python==3.8 $ source activate python38 $ pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu113 ``` Finally, compile and add the resulting library `greedrl` to the `PYTHONPATH` ```aidl $ python setup.py build $ export PYTHONPATH={your_current_path}/build/lib.linux-x86_64-cpython-38/:$PYTHONPATH ``` ## CVRP Training 1. Training data We use generated data for the training phase, the customers and depot locations are randomly generated in the unit square [0,1] X [0,1]. For CVRP, we assume that the demand of each node is a discrete number in {1,...,9}, chosen uniformly at random, and each vehicle has a default capacity of 50. 2. Start training ```python $ cd examples/cvrp $ python train.py --model_filename cvrp_100.pt --problem_size 100 ``` ## CVRP Testing After training process, you'll get a trained model, like `cvrp_100.pt`, that you can use for test. ```python $ cd examples/cvrp $ python solve.py --device cpu --model_name cvrp_100.pt --problem_size 100 ``` # Support We look forward you to downloading it, using it, and opening discussion if you encounter any problems or have ideas on building an even better experience. For commercial enquiries, please contact us. # Citation ``` @article{hu2022alibaba, title={Alibaba vehicle routing algorithms enable rapid pick and delivery}, author={Hu, Haoyuan and Zhang, Ying and Wei, Jiangwen and Zhan, Yang and Zhang, Xinhui and Huang, Shaojian and Ma, Guangrui and Deng, Yuming and Jiang, Siwei}, journal={INFORMS Journal on Applied Analytics}, volume={52}, number={1}, pages={27--41}, year={2022}, publisher={INFORMS} } ```