|
""" |
|
Usage: |
|
python3 apply_delta.py --base /path/to/model_weights/llama-13b --target stable-vicuna-13b --delta pvduy/stable-vicuna-13b-delta |
|
""" |
|
import argparse |
|
|
|
import torch |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
def apply_delta(base_model_path, target_model_path, delta_path): |
|
print("Loading base model") |
|
base = AutoModelForCausalLM.from_pretrained( |
|
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
|
|
print("Loading delta") |
|
delta = AutoModelForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path) |
|
|
|
DEFAULT_PAD_TOKEN = "[PAD]" |
|
base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False) |
|
num_new_tokens = base_tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN)) |
|
|
|
base.resize_token_embeddings(len(base_tokenizer)) |
|
input_embeddings = base.get_input_embeddings().weight.data |
|
output_embeddings = base.get_output_embeddings().weight.data |
|
input_embeddings[-num_new_tokens:] = 0 |
|
output_embeddings[-num_new_tokens:] = 0 |
|
|
|
print("Applying delta") |
|
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"): |
|
assert name in delta.state_dict() |
|
param.data += delta.state_dict()[name] |
|
|
|
print("Saving target model") |
|
base.save_pretrained(target_model_path) |
|
delta_tokenizer.save_pretrained(target_model_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--base-model-path", type=str, required=True) |
|
parser.add_argument("--target-model-path", type=str, required=True) |
|
parser.add_argument("--delta-path", type=str, required=True) |
|
|
|
args = parser.parse_args() |
|
|
|
apply_delta(args.base_model_path, args.target_model_path, args.delta_path) |