--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training --- # Text-to-image finetuning - CasperLD/cartoon_generation_sd_v1 This pipeline was finetuned from **stabilityai/stable-diffusion-2-1** on the **CasperLD/cartoons_with_blip_captions_512_max_3000_at_fg_s_sp** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['cartoon character with big eyes']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("CasperLD/cartoon_generation_sd_v1", torch_dtype=torch.float16) prompt = "cartoon character with big eyes" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 25 * Learning rate: 1e-05 * Batch size: 4 * Gradient accumulation steps: 1 * Image resolution: 512 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]