Training complete - BERTimbau-base-LeNER
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: neuralmind/bert-base-portuguese-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- lener_br
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: BERTimbau-base_LeNER-Br
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: lener_br
|
21 |
+
type: lener_br
|
22 |
+
config: lener_br
|
23 |
+
split: validation
|
24 |
+
args: lener_br
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8317805383022774
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8839383938393839
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8570666666666666
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9754369390647142
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# BERTimbau-base_LeNER-Br
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: nan
|
48 |
+
- Precision: 0.8318
|
49 |
+
- Recall: 0.8839
|
50 |
+
- F1: 0.8571
|
51 |
+
- Accuracy: 0.9754
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2037 | 1.0 | 979 | nan | 0.7910 | 0.8762 | 0.8314 | 0.9721 |
|
83 |
+
| 0.0308 | 2.0 | 1958 | nan | 0.7747 | 0.8663 | 0.8180 | 0.9698 |
|
84 |
+
| 0.02 | 3.0 | 2937 | nan | 0.8316 | 0.8911 | 0.8603 | 0.9801 |
|
85 |
+
| 0.0133 | 4.0 | 3916 | nan | 0.8038 | 0.8812 | 0.8407 | 0.9728 |
|
86 |
+
| 0.0111 | 5.0 | 4895 | nan | 0.8253 | 0.8707 | 0.8474 | 0.9753 |
|
87 |
+
| 0.0078 | 6.0 | 5874 | nan | 0.8235 | 0.8779 | 0.8498 | 0.9711 |
|
88 |
+
| 0.0057 | 7.0 | 6853 | nan | 0.8174 | 0.8768 | 0.8461 | 0.9760 |
|
89 |
+
| 0.0032 | 8.0 | 7832 | nan | 0.8113 | 0.8845 | 0.8463 | 0.9769 |
|
90 |
+
| 0.0027 | 9.0 | 8811 | nan | 0.8344 | 0.8867 | 0.8597 | 0.9767 |
|
91 |
+
| 0.0023 | 10.0 | 9790 | nan | 0.8318 | 0.8839 | 0.8571 | 0.9754 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.41.2
|
97 |
+
- Pytorch 2.3.0+cu121
|
98 |
+
- Datasets 2.20.0
|
99 |
+
- Tokenizers 0.19.1
|