CassioBN commited on
Commit
2a24caa
1 Parent(s): cd2bc8b

Training complete - BERTimbau-base-LeNER

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: neuralmind/bert-base-portuguese-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - lener_br
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: BERTimbau-base_LeNER-Br
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: lener_br
21
+ type: lener_br
22
+ config: lener_br
23
+ split: validation
24
+ args: lener_br
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8317805383022774
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8839383938393839
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8570666666666666
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9754369390647142
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # BERTimbau-base_LeNER-Br
44
+
45
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: nan
48
+ - Precision: 0.8318
49
+ - Recall: 0.8839
50
+ - F1: 0.8571
51
+ - Accuracy: 0.9754
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2037 | 1.0 | 979 | nan | 0.7910 | 0.8762 | 0.8314 | 0.9721 |
83
+ | 0.0308 | 2.0 | 1958 | nan | 0.7747 | 0.8663 | 0.8180 | 0.9698 |
84
+ | 0.02 | 3.0 | 2937 | nan | 0.8316 | 0.8911 | 0.8603 | 0.9801 |
85
+ | 0.0133 | 4.0 | 3916 | nan | 0.8038 | 0.8812 | 0.8407 | 0.9728 |
86
+ | 0.0111 | 5.0 | 4895 | nan | 0.8253 | 0.8707 | 0.8474 | 0.9753 |
87
+ | 0.0078 | 6.0 | 5874 | nan | 0.8235 | 0.8779 | 0.8498 | 0.9711 |
88
+ | 0.0057 | 7.0 | 6853 | nan | 0.8174 | 0.8768 | 0.8461 | 0.9760 |
89
+ | 0.0032 | 8.0 | 7832 | nan | 0.8113 | 0.8845 | 0.8463 | 0.9769 |
90
+ | 0.0027 | 9.0 | 8811 | nan | 0.8344 | 0.8867 | 0.8597 | 0.9767 |
91
+ | 0.0023 | 10.0 | 9790 | nan | 0.8318 | 0.8839 | 0.8571 | 0.9754 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.41.2
97
+ - Pytorch 2.3.0+cu121
98
+ - Datasets 2.20.0
99
+ - Tokenizers 0.19.1