--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: BERTimbau-base_LeNER-Br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.8317805383022774 - name: Recall type: recall value: 0.8839383938393839 - name: F1 type: f1 value: 0.8570666666666666 - name: Accuracy type: accuracy value: 0.9754369390647142 --- # BERTimbau-base_LeNER-Br This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8318 - Recall: 0.8839 - F1: 0.8571 - Accuracy: 0.9754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2037 | 1.0 | 979 | nan | 0.7910 | 0.8762 | 0.8314 | 0.9721 | | 0.0308 | 2.0 | 1958 | nan | 0.7747 | 0.8663 | 0.8180 | 0.9698 | | 0.02 | 3.0 | 2937 | nan | 0.8316 | 0.8911 | 0.8603 | 0.9801 | | 0.0133 | 4.0 | 3916 | nan | 0.8038 | 0.8812 | 0.8407 | 0.9728 | | 0.0111 | 5.0 | 4895 | nan | 0.8253 | 0.8707 | 0.8474 | 0.9753 | | 0.0078 | 6.0 | 5874 | nan | 0.8235 | 0.8779 | 0.8498 | 0.9711 | | 0.0057 | 7.0 | 6853 | nan | 0.8174 | 0.8768 | 0.8461 | 0.9760 | | 0.0032 | 8.0 | 7832 | nan | 0.8113 | 0.8845 | 0.8463 | 0.9769 | | 0.0027 | 9.0 | 8811 | nan | 0.8344 | 0.8867 | 0.8597 | 0.9767 | | 0.0023 | 10.0 | 9790 | nan | 0.8318 | 0.8839 | 0.8571 | 0.9754 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1