--- base_model: - meta-llama/Meta-Llama-3-8B - meta-llama/Meta-Llama-3-8B-Instruct - rinna/llama-3-youko-8b - rinna/llama-3-youko-8b-instruct - tokyotech-llm/Llama-3-Swallow-8B-v0.1 - tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 - shisa-ai/shisa-v1-llama3-8b - lmg-anon/vntl-llama3-8b-v2-qlora library_name: transformers tags: - mergekit - merge - translation - japanese_media - otaku_media - visual_novels - VNs language: - en - ja --- # Llama-3-VNTL-Yollisa-8B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). This merge is an expansion on the idea of [merging at extremely low weight as an alternitive to finetuning](https://huggingface.co/grimjim/kukulemon-v3-soul_mix-32k-7B) with the added step of subtracting the base model from finetunes before merging. Instruct format is the custom version of llama3 that VNTL uses, but you should be able to mix in some regular llama3 formats as well, and it might even help with improving translation quality with the right prompt. ## Usage ### Presets For SillyTavern use [these presets.](https://huggingface.co/Casual-Autopsy/Llama-3-VNTL-Yollisa-8B/tree/main/ST) When adding prompts outside of Metadata, set role to system and add instruct format manually. Because system prompt formats are blank, this allows to write ST scripts to add old chat pairs to the Data Bank with instruct formats RegExed in and inject them via RAG. I found that doing so increases translation quality greatly. The Data Bank entry should look something like this with instruct format included: ``` <|start_header_id|>Japanese<|end_header_id|> イヴ「ええ、導力を失い、か弱くなってしまったわたくしの1人や2人くらい守ってくださらないとね」<|eot_id|><|start_header_id|>English<|end_header_id|> Yves: "Yes, I’ve lost my douryoku and become weaker. You’ll have to protect someone like me, won’t you?"<|eot_id|> ``` ### Samplers ```yaml top_k: 1 min_p: 0.15 rep_pen: 1.01 pres_pen: -0.05 rep_pen_range: 512 dyna_temp: min: 0.7 max: 1.3 exp: 1.0 sampler_order: - min_p - temp - penalties - top_k ``` ## Configuration The following YAML configuration was used to produce this model: ### Llama-3-Yollow-8B ```yaml models: # Pivot model - model: meta-llama/Meta-Llama-3-8B # Target models - model: rinna/llama-3-youko-8b - model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 merge_method: sce base_model: meta-llama/Meta-Llama-3-8B parameters: select_topk: 1.0 dtype: float32 ``` ### Llama-3-Minus-Base-8B ```yaml models: # Finetune model - model: meta-llama/Meta-Llama-3-8B-Instruct parameters: weight: 1.0 # Base model - model: meta-llama/Meta-Llama-3-8B parameters: weight: -1.0 merge_method: task_arithmetic base_model: meta-llama/Meta-Llama-3-8B-Instruct parameters: normalize: false dtype: float32 ``` ### Llama-3-Youko-Minus-Base-8B ```yaml models: # Finetune model - model: rinna/llama-3-youko-8b-instruct parameters: weight: 1.0 # Base model - model: meta-llama/Meta-Llama-3-8B parameters: weight: -1.0 merge_method: task_arithmetic base_model: rinna/llama-3-youko-8b-instruct parameters: normalize: false dtype: float32 ``` ### Llama-3-Swallow-Minus-Base-8B ```yaml models: # Finetune model - model: tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 parameters: weight: 1.0 # Base model - model: meta-llama/Meta-Llama-3-8B parameters: weight: -1.0 merge_method: task_arithmetic base_model: tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 parameters: normalize: false dtype: float32 ``` ### Llama-3-Shisa-Minus-Base-8B ```yaml models: # Finetune model - model: shisa-ai/shisa-v1-llama3-8b parameters: weight: 1.0 # Base model - model: meta-llama/Meta-Llama-3-8B parameters: weight: -1.0 merge_method: task_arithmetic base_model: shisa-ai/shisa-v1-llama3-8b parameters: normalize: false dtype: float32 ``` ### Llama-3-VNTL-Yollisa-8B ```yaml models: # Base - model: Casual-Autopsy/Llama-3-Yollow-8B+lmg-anon/vntl-llama3-8b-v2-qlora parameters: weight: 1.0 # Models - model: Casual-Autopsy/Llama-3-Minus-Base-8B parameters: density: 0.35 weight: 10e-5 - model: Casual-Autopsy/Llama-3-Shisa-Minus-Base-8B parameters: density: 0.85 weight: 25e-5 - model: Casual-Autopsy/Llama-3-Swallow-Minus-Base-8B parameters: density: 0.85 weight: 25e-5 - model: Casual-Autopsy/Llama-3-Youko-Minus-Base-8B parameters: density: 0.85 weight: 25e-5 merge_method: ties base_model: Casual-Autopsy/Llama-3-Yollow-8B+lmg-anon/vntl-llama3-8b-v2-qlora parameters: normalize: false int8_mask: false dtype: float32 ```